A new Sliding-Mode Control law for a Planar Dielectric Elastomer Actuator to Track wide-Band Trajectories

S. O. Kassim, James D. J. MacLean, S. S. Aphale
{"title":"A new Sliding-Mode Control law for a Planar Dielectric Elastomer Actuator to Track wide-Band Trajectories","authors":"S. O. Kassim, James D. J. MacLean, S. S. Aphale","doi":"10.1109/MMAR55195.2022.9874331","DOIUrl":null,"url":null,"abstract":"Dielectric Elastomer Actuator (DEA) based soft robots are gaining widespread recognition for numerous applications such as; medical devices, bio-inspired systems and flexible prosthetics to name but a few. Due to their nonlinearity relating mostly to hysteresis and creep, most DEAs are subject to precision positioning challenges. To enable precise positioning, control-enabling DEA models and controllers are developed to curb the issues of their nonlinear dynamics. This paper presents a new Sliding-Mode Control (SMC) based on reaching law for precise position tracking of an adopted simplified and experimentally validated DEA model. The proposed reaching law incorporates a high-slope saturation function with an exponential denominator to drastically reduce chattering and enhance fast and finite convergence. The sliding-mode controller stability is validated using a Lyapunov candidate for asymptotic stable. Finally, Closed-loop simulations demonstrating the controller's effectiveness at suppressing chattering and tracking wide-band trajectories (triangular and sinusoidal) were implemented.","PeriodicalId":169528,"journal":{"name":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR55195.2022.9874331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dielectric Elastomer Actuator (DEA) based soft robots are gaining widespread recognition for numerous applications such as; medical devices, bio-inspired systems and flexible prosthetics to name but a few. Due to their nonlinearity relating mostly to hysteresis and creep, most DEAs are subject to precision positioning challenges. To enable precise positioning, control-enabling DEA models and controllers are developed to curb the issues of their nonlinear dynamics. This paper presents a new Sliding-Mode Control (SMC) based on reaching law for precise position tracking of an adopted simplified and experimentally validated DEA model. The proposed reaching law incorporates a high-slope saturation function with an exponential denominator to drastically reduce chattering and enhance fast and finite convergence. The sliding-mode controller stability is validated using a Lyapunov candidate for asymptotic stable. Finally, Closed-loop simulations demonstrating the controller's effectiveness at suppressing chattering and tracking wide-band trajectories (triangular and sinusoidal) were implemented.
一种新的平面介电弹性体作动器宽带轨迹滑模控制律
基于介电弹性体致动器(DEA)的软机器人在许多应用中获得了广泛的认可,例如;医疗设备,仿生系统和柔性假肢等等。由于其主要与滞后和蠕变有关的非线性,大多数dea都面临精确定位的挑战。为了实现精确定位,开发了支持控制的DEA模型和控制器来抑制其非线性动力学问题。本文提出了一种新的基于趋近律的滑模控制(SMC),用于对经过简化和实验验证的DEA模型进行精确位置跟踪。所提出的趋近律引入了一个带指数分母的高斜率饱和函数,大大减少了抖振,提高了快速和有限收敛性。利用Lyapunov渐近稳定候选函数验证了滑模控制器的稳定性。最后,进行了闭环仿真,证明了控制器在抑制抖振和跟踪宽带轨迹(三角形和正弦)方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信