Existence of Rost Motives

C. Haesemeyer, C. Weibel
{"title":"Existence of Rost Motives","authors":"C. Haesemeyer, C. Weibel","doi":"10.2307/j.ctv941tx2.10","DOIUrl":null,"url":null,"abstract":"This chapter fixes a Rost variety 𝑋 for a sequence. It constructs a Rost motive 𝑀 = (𝑋, 𝑒) with coefficients ℤ(𝓁) under the inductive assumption that BL(n − 1) holds and discusses three important axioms. It introduces a candidate for the Rost motive and demonstrates how a motive satisfies two axioms. To further aid in the proof, the chapter argues that End(𝑀) is a local ring and then verifies an axiom proving that 𝑀 is a Rost motive whenever 𝑋 is a Rost variety. Finally, the chapter considers the historical background behind these equations. It reveals the eponymous Rost motive and considers Voevodsky's own construction of the Rost motive.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv941tx2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter fixes a Rost variety 𝑋 for a sequence. It constructs a Rost motive 𝑀 = (𝑋, 𝑒) with coefficients ℤ(𝓁) under the inductive assumption that BL(n − 1) holds and discusses three important axioms. It introduces a candidate for the Rost motive and demonstrates how a motive satisfies two axioms. To further aid in the proof, the chapter argues that End(𝑀) is a local ring and then verifies an axiom proving that 𝑀 is a Rost motive whenever 𝑋 is a Rost variety. Finally, the chapter considers the historical background behind these equations. It reveals the eponymous Rost motive and considers Voevodsky's own construction of the Rost motive.
主要动机的存在
本章修复了一个序列的Rost变量𝑋。在BL(n−1)成立的归纳假设下,构造了系数为0(𝓁)的Rost动机𝑀=(𝑋,𝑒),并讨论了三个重要公理。它介绍了罗斯特动机的一个候选,并演示了一个动机如何满足两个公理。为了进一步帮助证明,本章论证了End(𝑀)是一个局部环,然后验证了一个公理,证明𝑀是一个Rost动机,只要𝑋是一个Rost变量。最后,本章考虑了这些方程背后的历史背景。它揭示了同名的罗斯特动机,并考虑了沃沃茨基自己对罗斯特动机的建构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信