On Boeing 737 – 300 Wing Aerodynamics Calculations Based on VLM Theory

J. Nagler
{"title":"On Boeing 737 – 300 Wing Aerodynamics Calculations Based on VLM Theory","authors":"J. Nagler","doi":"10.18282/FME.V1I1.604","DOIUrl":null,"url":null,"abstract":"In this paper, aerodynamics coefficients of Boeing 737-300 were calculated using VLM (vortex lattice method) theory. The wing was assumed to be planar and was divided into 6×6 panels, which were in the trapezoid shape. Aerodynamics lifting and moment coefficients were calculated. Also, center of pressure location was found using data from VLM and wing geometry. Comparisons between literature, finite wing theory and VLM theory were done. It was found that maximum lifting coefficient error between literature and VLM was about 4.0%. Moreover, that between finite wing theory and VLM was about 2.2%. Center of pressure location error between finite wing theory and VLM was about 0.5%.","PeriodicalId":230486,"journal":{"name":"Frontiers of Mechatronical Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Mechatronical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18282/FME.V1I1.604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, aerodynamics coefficients of Boeing 737-300 were calculated using VLM (vortex lattice method) theory. The wing was assumed to be planar and was divided into 6×6 panels, which were in the trapezoid shape. Aerodynamics lifting and moment coefficients were calculated. Also, center of pressure location was found using data from VLM and wing geometry. Comparisons between literature, finite wing theory and VLM theory were done. It was found that maximum lifting coefficient error between literature and VLM was about 4.0%. Moreover, that between finite wing theory and VLM was about 2.2%. Center of pressure location error between finite wing theory and VLM was about 0.5%.
基于VLM理论的波音737 - 300机翼空气动力学计算
本文采用涡格法(VLM)理论计算了波音737-300飞机的空气动力学系数。机翼假设是平面的,并被分成6×6面板,它们是梯形的。计算了空气动力学升力系数和力矩系数。此外,利用VLM和机翼几何形状的数据找到了压力中心的位置。对文献、有限翼理论和VLM理论进行了比较。结果表明,文献与VLM的最大升力系数误差约为4.0%。有限翼理论与VLM理论之间的误差约为2.2%。有限翼理论与VLM的压力中心定位误差约为0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信