{"title":"Parametric optimization of stored energy in robots with regenerative drive systems","authors":"Poya Khalaf, H. Richter","doi":"10.1109/AIM.2016.7576970","DOIUrl":null,"url":null,"abstract":"The paper formulates and solves the problem of finding a set of physical (design) parameters that maximize stored energy in electromechanical robots with regenerative drive systems. The robot is assumed to include semi-active and fully-active joints. Semi-active joints exchange power only with the robot, and are assumed to use (ultra)capacitors for storage. Fully-active joints are conventional in the sense that external power is used for actuation. The semi-active joints are controlled for trajectory tracking by a previously-published virtual control strategy whereby a control law is first designed and then implemented via a virtual matching law. A set of reference trajectories and a virtual controller capable of achieving asymptotic tracking are assumed as given. Equations are derived for the energy stored in the ultracapacitors of the semi-active joints in terms of manipulator parameters. The paper obtains closed-form solutions for the maximizing parameters. It is shown that a unique solution always exists and that it corresponds to a unique global maximum for the stored energy between any two times. A numerical example with a double inverted pendulum and cart system with semi-active and fully-active joints demonstrates the results.","PeriodicalId":154457,"journal":{"name":"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2016.7576970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The paper formulates and solves the problem of finding a set of physical (design) parameters that maximize stored energy in electromechanical robots with regenerative drive systems. The robot is assumed to include semi-active and fully-active joints. Semi-active joints exchange power only with the robot, and are assumed to use (ultra)capacitors for storage. Fully-active joints are conventional in the sense that external power is used for actuation. The semi-active joints are controlled for trajectory tracking by a previously-published virtual control strategy whereby a control law is first designed and then implemented via a virtual matching law. A set of reference trajectories and a virtual controller capable of achieving asymptotic tracking are assumed as given. Equations are derived for the energy stored in the ultracapacitors of the semi-active joints in terms of manipulator parameters. The paper obtains closed-form solutions for the maximizing parameters. It is shown that a unique solution always exists and that it corresponds to a unique global maximum for the stored energy between any two times. A numerical example with a double inverted pendulum and cart system with semi-active and fully-active joints demonstrates the results.