S. Dabour, A. Abdel-Khalik, Shehab Ahmed, A. Massoud
{"title":"A new dual series-connected Nine-Switch Converter topology for a twelve-phase induction machine wind energy system","authors":"S. Dabour, A. Abdel-Khalik, Shehab Ahmed, A. Massoud","doi":"10.1109/CPE.2017.7915159","DOIUrl":null,"url":null,"abstract":"This paper introduces a new transformerless converter topology for Multiphase-Based Wind Energy Conversion Systems (WECSs). In this topology, a twelve-phase induction generator is integrated to the grid using dual Nine-Switch Converters (NSCs) connected in series forming a high voltage cascaded dc-link. For this generator phase number, this topology reduces the total number of semiconductor devices in the machine side converter by 25% than conventional topologies, where four three-phase two-level voltage source converters are typically needed. Moreover, it offers a high ac-dc boosting capability, which facilities a transformerless system operation. The twelve-phase induction generator can be regarded as dual symmetrical six-phase windings with a spatial displacement of 30°. Therefore, each NSC controls each six-phase winding set. The dc-link midpoint balancing is achieved based on controlling the (x−y) current components of the two winding groups. The proposed topology and its control system are analyzed and simulated under different operating cases using MATLAB/SIMULINK.","PeriodicalId":259750,"journal":{"name":"2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE.2017.7915159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper introduces a new transformerless converter topology for Multiphase-Based Wind Energy Conversion Systems (WECSs). In this topology, a twelve-phase induction generator is integrated to the grid using dual Nine-Switch Converters (NSCs) connected in series forming a high voltage cascaded dc-link. For this generator phase number, this topology reduces the total number of semiconductor devices in the machine side converter by 25% than conventional topologies, where four three-phase two-level voltage source converters are typically needed. Moreover, it offers a high ac-dc boosting capability, which facilities a transformerless system operation. The twelve-phase induction generator can be regarded as dual symmetrical six-phase windings with a spatial displacement of 30°. Therefore, each NSC controls each six-phase winding set. The dc-link midpoint balancing is achieved based on controlling the (x−y) current components of the two winding groups. The proposed topology and its control system are analyzed and simulated under different operating cases using MATLAB/SIMULINK.