{"title":"Topological Insulator Materials for Advanced Optoelectronic Devices","authors":"Z. Yue, Xiaolin Wang, M. Gu","doi":"10.1002/9781119407317.CH2","DOIUrl":null,"url":null,"abstract":"Topological insulators are quantum materials that have an insulating bulk state and a topologically protected metallic surface state with spin and momentum helical locking and a Dirac-like band structure. Unique and fascinating electronic properties, such as the quantum spin Hall effect, quantum anomalous Hall effect, and topological magnetoelectric effect, as well as magnetic monopole images and Majorana fermions, have been observed in the topological insulator materials. With these unique properties, topological insulator materials have great potential applications in spintronics and quantum information processing, as well as magnetoelectric devices with higher efficiency and lower energy consumption. On the other hand, topological insulator materials also exhibit a number of excellent optical properties, including Kerr and Faraday rotation, ultrahigh bulk refractive index, near-infrared frequency transparency, unusual electromagnetic scattering, and ultra-broadband surface plasmon resonances. Specifically, Dirac plasmon excitations have been observed in Bi2Se3 micro-ribbon arrays at THz frequencies. Ultraviolet and visible frequency plasmonics have been observed in nanoslit and nanocone arrays of Bi1.5Sb0.5Te1.8Se1.2 crystals. High transparency has been observed in Bi2Se3 nanoplates. An ultrahigh refractive index has been observed in bulk Bi1.5Sb0.5Te1.8Se1.2 crystals as well as in Sb2Te3 thin films. These excellent optical properties mean that topological insulator materials are suitable for various optoelectronic devices, including plasmonic solar cells, ultrathin holograms, plasmonic and Fresnel lens, broadband photodetectors, and nanoscale waveguides. In this chapter, we focus on the excellent electronic and optical properties of topological insulator materials and their wide applications in advanced optoelectronic devices.","PeriodicalId":269760,"journal":{"name":"Advanced Topological Insulators","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Topological Insulators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119407317.CH2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Topological insulators are quantum materials that have an insulating bulk state and a topologically protected metallic surface state with spin and momentum helical locking and a Dirac-like band structure. Unique and fascinating electronic properties, such as the quantum spin Hall effect, quantum anomalous Hall effect, and topological magnetoelectric effect, as well as magnetic monopole images and Majorana fermions, have been observed in the topological insulator materials. With these unique properties, topological insulator materials have great potential applications in spintronics and quantum information processing, as well as magnetoelectric devices with higher efficiency and lower energy consumption. On the other hand, topological insulator materials also exhibit a number of excellent optical properties, including Kerr and Faraday rotation, ultrahigh bulk refractive index, near-infrared frequency transparency, unusual electromagnetic scattering, and ultra-broadband surface plasmon resonances. Specifically, Dirac plasmon excitations have been observed in Bi2Se3 micro-ribbon arrays at THz frequencies. Ultraviolet and visible frequency plasmonics have been observed in nanoslit and nanocone arrays of Bi1.5Sb0.5Te1.8Se1.2 crystals. High transparency has been observed in Bi2Se3 nanoplates. An ultrahigh refractive index has been observed in bulk Bi1.5Sb0.5Te1.8Se1.2 crystals as well as in Sb2Te3 thin films. These excellent optical properties mean that topological insulator materials are suitable for various optoelectronic devices, including plasmonic solar cells, ultrathin holograms, plasmonic and Fresnel lens, broadband photodetectors, and nanoscale waveguides. In this chapter, we focus on the excellent electronic and optical properties of topological insulator materials and their wide applications in advanced optoelectronic devices.