{"title":"An Improvement in Apriori Algorithm Using Profit and Quantity","authors":"P. Sandhu, D. Dhaliwal, S. Panda, A. Bisht","doi":"10.1109/ICCNT.2010.46","DOIUrl":null,"url":null,"abstract":"Association rule mining has been an area of active research in the field of knowledge discovery and numerous algorithms have been developed to this end. Of late, data mining researchers have improved upon the quality of association rule mining for business development by incorporating the influential factors like value (utility), quantity of items sold (weight) and more, for the mining of association patterns. In this paper, we propose an efficient approach based on weight factor and utility for effectual mining of significant association rules. Initially, the proposed approach makes use of the traditional Apriori algorithm to generate a set of association rules from a database. The proposed approach exploits the anti-monotone property of the Apriori algorithm, which states that for a k-itemset to be frequent all (k-1) subsets of this itemset also have to be frequent. Subsequently, the set of association rules mined are subjected to weight age (W-gain) and utility (U-gain) constraints, and for every association rule mined, a combined Utility Weighted Score (UW-Score) is computed. Ultimately, we determine a subset of valuable association rules based on the UW-Score computed. The experimental results demonstrate the effectiveness of the proposed approach in generating high utility association rules that can be lucratively applied for business development.","PeriodicalId":135847,"journal":{"name":"2010 Second International Conference on Computer and Network Technology","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer and Network Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNT.2010.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Association rule mining has been an area of active research in the field of knowledge discovery and numerous algorithms have been developed to this end. Of late, data mining researchers have improved upon the quality of association rule mining for business development by incorporating the influential factors like value (utility), quantity of items sold (weight) and more, for the mining of association patterns. In this paper, we propose an efficient approach based on weight factor and utility for effectual mining of significant association rules. Initially, the proposed approach makes use of the traditional Apriori algorithm to generate a set of association rules from a database. The proposed approach exploits the anti-monotone property of the Apriori algorithm, which states that for a k-itemset to be frequent all (k-1) subsets of this itemset also have to be frequent. Subsequently, the set of association rules mined are subjected to weight age (W-gain) and utility (U-gain) constraints, and for every association rule mined, a combined Utility Weighted Score (UW-Score) is computed. Ultimately, we determine a subset of valuable association rules based on the UW-Score computed. The experimental results demonstrate the effectiveness of the proposed approach in generating high utility association rules that can be lucratively applied for business development.