Blind Phase-aberrated Baseband Point Spread Function Estimation Using Complex-valued Convolutional Neural Network

Yu-An Lin, Wei-Hsiang Shen, Meng-Lin Li
{"title":"Blind Phase-aberrated Baseband Point Spread Function Estimation Using Complex-valued Convolutional Neural Network","authors":"Yu-An Lin, Wei-Hsiang Shen, Meng-Lin Li","doi":"10.1109/IUS54386.2022.9958819","DOIUrl":null,"url":null,"abstract":"Many methods used to improve clinical ultrasound image quality, e.g. deconvolution, require precise estimation of point spread function (PSF). However, the PSF cannot be well estimated even with prior knowledge of the system setting because the unknown property of inhomogeneous sound velocity in human tissue leads to phase-aberrated PSF. In addition, most image quality improving techniques are performed over beamformed baseband data (i.e., IQ data) and most portable ultrasound systems only allows the access of beamformed baseband data because of limited data transfer bandwidth. Thus, blind phase-aberrated PSF estimation directly from the beamformed baseband data is beneficial for portable ultrasound to leverage these image quality improving techniques. For this purpose, we introduce a novel complex-valued convolutional neural network (CNN) based blind estimator of phase-aberrated PSF using beamformed baseband data. Simulation results show that the proposed complex-valued U-Net estimator produces an aberrated PSF with higher similarity to the ground truth PSF.","PeriodicalId":272387,"journal":{"name":"2022 IEEE International Ultrasonics Symposium (IUS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUS54386.2022.9958819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many methods used to improve clinical ultrasound image quality, e.g. deconvolution, require precise estimation of point spread function (PSF). However, the PSF cannot be well estimated even with prior knowledge of the system setting because the unknown property of inhomogeneous sound velocity in human tissue leads to phase-aberrated PSF. In addition, most image quality improving techniques are performed over beamformed baseband data (i.e., IQ data) and most portable ultrasound systems only allows the access of beamformed baseband data because of limited data transfer bandwidth. Thus, blind phase-aberrated PSF estimation directly from the beamformed baseband data is beneficial for portable ultrasound to leverage these image quality improving techniques. For this purpose, we introduce a novel complex-valued convolutional neural network (CNN) based blind estimator of phase-aberrated PSF using beamformed baseband data. Simulation results show that the proposed complex-valued U-Net estimator produces an aberrated PSF with higher similarity to the ground truth PSF.
基于复值卷积神经网络的盲相位像差基带点扩展函数估计
许多用于提高临床超声图像质量的方法,如反卷积,需要精确估计点扩展函数(PSF)。然而,即使事先知道系统设置,也不能很好地估计PSF,因为人体组织中声速不均匀的未知特性导致了相位像差PSF。此外,大多数图像质量改进技术都是在波束形成的基带数据(即IQ数据)上进行的,而且由于数据传输带宽有限,大多数便携式超声系统只允许访问波束形成的基带数据。因此,直接从波束形成的基带数据中盲相位像差PSF估计有利于便携式超声利用这些图像质量改进技术。为此,我们引入了一种基于复值卷积神经网络(CNN)的基于波束形成基带数据的相位像差PSF盲估计器。仿真结果表明,所提出的复值U-Net估计器产生的像差PSF与地面真值PSF具有较高的相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信