Visual localization and object tracking for the NAO robot in dynamic environment

C. Li, Xin Wang
{"title":"Visual localization and object tracking for the NAO robot in dynamic environment","authors":"C. Li, Xin Wang","doi":"10.1109/ICINFA.2016.7831973","DOIUrl":null,"url":null,"abstract":"In this paper, we present an integrated approach of multiple algorithms for visual localization and object tracking. First, a spatial point monocular vision range model is established. Combined with vision technology, we can deduce a precise position of the target in the world frame, and the region of recognized object is regarded as the real tracking region. Second, The Camshift/Kalman/Particle algorithm has been fused to resolve some common problems in video tracking, such as background interference, target with sudden move, occlusion, dim-small size and etc. Finally, a monocular vision range experiment and a target object tracking experiment are carried out. In order to complete the autonomous navigation experiment, both the visual localization method and target object tracking algorithm are implemented on the robot. These experimental results show the validity of our approaches.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7831973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we present an integrated approach of multiple algorithms for visual localization and object tracking. First, a spatial point monocular vision range model is established. Combined with vision technology, we can deduce a precise position of the target in the world frame, and the region of recognized object is regarded as the real tracking region. Second, The Camshift/Kalman/Particle algorithm has been fused to resolve some common problems in video tracking, such as background interference, target with sudden move, occlusion, dim-small size and etc. Finally, a monocular vision range experiment and a target object tracking experiment are carried out. In order to complete the autonomous navigation experiment, both the visual localization method and target object tracking algorithm are implemented on the robot. These experimental results show the validity of our approaches.
动态环境下NAO机器人的视觉定位与目标跟踪
在本文中,我们提出了一种综合多种算法的视觉定位和目标跟踪方法。首先,建立空间点单目视觉距离模型;结合视觉技术,可以推导出目标在世界框架中的精确位置,并将识别出的目标区域作为真实的跟踪区域。其次,融合了Camshift/Kalman/Particle算法,解决了视频跟踪中常见的背景干扰、目标突然移动、遮挡、尺寸过小等问题。最后,进行了单目视觉距离实验和目标跟踪实验。为了完成自主导航实验,在机器人上实现了视觉定位方法和目标跟踪算法。实验结果表明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信