Han Fan, Daniel Jonsson, E. Schaffernicht, A. Lilienthal
{"title":"Towards Gas Identification in Unknown Mixtures Using an Electronic Nose with One-Class Learning","authors":"Han Fan, Daniel Jonsson, E. Schaffernicht, A. Lilienthal","doi":"10.1109/ISOEN54820.2022.9789607","DOIUrl":null,"url":null,"abstract":"Gas identification using an electronic nose (e-nose) typically relies on a multi-class classifier trained with extensive data of a limited set of target analytes. Usually, classification performance degrades in the presence of mixtures that include interferents not represented in the training data. This issue limits the applicability of e-noses in real-world scenarios where interferents are a priori unknown. This paper investigates the feasibility of tackling this particular gas identification problem using one-class learning. We propose several training strategies for a one-class support vector machine to deal with gas mixtures composed of a target analyte and an interferent at different concentration levels. Our evaluation indicates that accurate identification of the presence of a target analyte is achievable if it is dominant in a mixture. For interferent-dominant mixtures, extensive training is required, which implies that an improvement in the generalization ability of the one-class model is needed.","PeriodicalId":427373,"journal":{"name":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOEN54820.2022.9789607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gas identification using an electronic nose (e-nose) typically relies on a multi-class classifier trained with extensive data of a limited set of target analytes. Usually, classification performance degrades in the presence of mixtures that include interferents not represented in the training data. This issue limits the applicability of e-noses in real-world scenarios where interferents are a priori unknown. This paper investigates the feasibility of tackling this particular gas identification problem using one-class learning. We propose several training strategies for a one-class support vector machine to deal with gas mixtures composed of a target analyte and an interferent at different concentration levels. Our evaluation indicates that accurate identification of the presence of a target analyte is achievable if it is dominant in a mixture. For interferent-dominant mixtures, extensive training is required, which implies that an improvement in the generalization ability of the one-class model is needed.