Comparative Analysis of Power Electronics Topologies to Interface dc Homes with the Electrical ac Power Grid

T. Sousa, V. Monteiro, J. S. Martins, M. Sepulveda, A. Lima, J. Afonso
{"title":"Comparative Analysis of Power Electronics Topologies to Interface dc Homes with the Electrical ac Power Grid","authors":"T. Sousa, V. Monteiro, J. S. Martins, M. Sepulveda, A. Lima, J. Afonso","doi":"10.1109/SEST.2019.8849046","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative analysis of power electronics topologies that can be used to interface dc homes with a 230 V, 50 Hz ac power grid. Dc homes represent an essential asset for smart grids, since energy storage systems and renewable energy sources, such as photovoltaic solar panels, operate in dc, as well as most of the electrical appliances used in domestic scenario. However, since the power grid operates in ac, it is necessary to convert voltage from ac to dc to properly supply a dc home. This conversion can be accomplished in several ways, with different power conversion stages. In this context, this paper analyzes three different possibilities that can be used to perform the interface between the ac power grid and a dc home: (1) ac-dc converter using a low frequency transformer; (2) ac-dc and dc-dc converters using a high frequency transformer; (3) ac-ac and ac-dc converters using a medium frequency transformer. These three possibilities are compared in terms of efficiency, total power factor and total harmonic distortion of the ac power grid. The results were obtained by means of a simulation model based on the internal parameters of the power semiconductors.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a comparative analysis of power electronics topologies that can be used to interface dc homes with a 230 V, 50 Hz ac power grid. Dc homes represent an essential asset for smart grids, since energy storage systems and renewable energy sources, such as photovoltaic solar panels, operate in dc, as well as most of the electrical appliances used in domestic scenario. However, since the power grid operates in ac, it is necessary to convert voltage from ac to dc to properly supply a dc home. This conversion can be accomplished in several ways, with different power conversion stages. In this context, this paper analyzes three different possibilities that can be used to perform the interface between the ac power grid and a dc home: (1) ac-dc converter using a low frequency transformer; (2) ac-dc and dc-dc converters using a high frequency transformer; (3) ac-ac and ac-dc converters using a medium frequency transformer. These three possibilities are compared in terms of efficiency, total power factor and total harmonic distortion of the ac power grid. The results were obtained by means of a simulation model based on the internal parameters of the power semiconductors.
连接直流家庭与交流电网的电力电子拓扑比较分析
本文介绍了可用于连接直流家庭与230 V, 50 Hz交流电网的电力电子拓扑结构的比较分析。直流家庭代表了智能电网的重要资产,因为储能系统和可再生能源,如光伏太阳能电池板,在直流中运行,以及在家庭场景中使用的大多数电器。然而,由于电网在交流中运行,有必要将电压从交流转换为直流,以适当地为直流家庭供电。这种转换可以通过不同的功率转换阶段以几种方式完成。在此背景下,本文分析了三种不同的可能性,可用于执行交流电网和直流家庭之间的接口:(1)使用低频变压器的交直流变换器;(2)采用高频变压器的ac-dc和dc-dc变换器;(3)采用中频变压器的交-交和交-直流变换器。从交流电网的效率、总功率因数和总谐波畸变三个方面对这三种可能性进行了比较。通过基于功率半导体内部参数的仿真模型,得到了上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信