Spike-Based MAX Networks for Nonlinear Pooling in Hierarchical Vision Processing

F. Folowosele, R. J. Vogelstein, R. Etienne-Cummings
{"title":"Spike-Based MAX Networks for Nonlinear Pooling in Hierarchical Vision Processing","authors":"F. Folowosele, R. J. Vogelstein, R. Etienne-Cummings","doi":"10.1109/BIOCAS.2007.4463313","DOIUrl":null,"url":null,"abstract":"Complex cells in the visual cortex utilize a maximum (MAX) operation to pool the outputs of simple cells to achieve feature specificity and invariance. We demonstrate a biologically-plausible MAX network for nonlinear pooling in hardware, using a reconfigurable multichip address event representation based VLSI system. With this implementation we have shown that we can implement simple and advanced stages of visual processing on the same chip and are one step closer to constructing an autonomous, continuous-time, biologically- plausible hierarchical model of visual information processing using large-scale arrays of identical silicon neurons.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Complex cells in the visual cortex utilize a maximum (MAX) operation to pool the outputs of simple cells to achieve feature specificity and invariance. We demonstrate a biologically-plausible MAX network for nonlinear pooling in hardware, using a reconfigurable multichip address event representation based VLSI system. With this implementation we have shown that we can implement simple and advanced stages of visual processing on the same chip and are one step closer to constructing an autonomous, continuous-time, biologically- plausible hierarchical model of visual information processing using large-scale arrays of identical silicon neurons.
层次视觉处理中基于峰值的非线性池化MAX网络
视觉皮层中的复杂细胞利用最大(MAX)操作来汇集简单细胞的输出,以实现特征的特异性和不变性。我们使用基于VLSI系统的可重构多芯片地址事件表示,演示了用于硬件中非线性池化的生物学似是而非的MAX网络。通过这种实现,我们已经证明我们可以在同一芯片上实现简单和高级的视觉处理阶段,并且更接近于构建一个自主的,连续时间的,生物上合理的视觉信息处理层次模型,使用大规模的相同硅神经元阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信