Towards Real Time Thermal Simulations for Design Optimization using Graph Neural Networks

H. Sanchis-Alepuz, Monika Stipsitz
{"title":"Towards Real Time Thermal Simulations for Design Optimization using Graph Neural Networks","authors":"H. Sanchis-Alepuz, Monika Stipsitz","doi":"10.1109/DMC55175.2022.9906469","DOIUrl":null,"url":null,"abstract":"This paper presents a method to simulate the thermal behavior of 3D systems using a graph neural network. The method discussed achieves a significant speed-up with respect to a traditional finite-element simulation. The graph neural network is trained on a diverse dataset of 3D CAD designs and the corresponding finite-element simulations, representative of the different geometries, material properties and losses that appear in the design of electronic systems. We present for the transient thermal behavior of a test system. The accuracy of the network result for one-step predictions is remarkable (0.003% error). After 400 time steps, the accumulated error reaches 0.78 %. The computing time of each time step is 50 ms. Reducing the accumulated error is the current focus of our work. In the future, a tool such as the one we are presenting could provide nearly instantaneous approximations of the thermal behavior of a system that can be used for design optimization.","PeriodicalId":245908,"journal":{"name":"2022 IEEE Design Methodologies Conference (DMC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Design Methodologies Conference (DMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMC55175.2022.9906469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a method to simulate the thermal behavior of 3D systems using a graph neural network. The method discussed achieves a significant speed-up with respect to a traditional finite-element simulation. The graph neural network is trained on a diverse dataset of 3D CAD designs and the corresponding finite-element simulations, representative of the different geometries, material properties and losses that appear in the design of electronic systems. We present for the transient thermal behavior of a test system. The accuracy of the network result for one-step predictions is remarkable (0.003% error). After 400 time steps, the accumulated error reaches 0.78 %. The computing time of each time step is 50 ms. Reducing the accumulated error is the current focus of our work. In the future, a tool such as the one we are presenting could provide nearly instantaneous approximations of the thermal behavior of a system that can be used for design optimization.
面向设计优化的实时热仿真图神经网络
本文提出了一种用图神经网络模拟三维系统热行为的方法。所讨论的方法相对于传统的有限元模拟实现了显著的加速。图形神经网络在3D CAD设计和相应的有限元模拟的不同数据集上进行训练,这些数据集代表了电子系统设计中出现的不同几何形状、材料特性和损耗。我们给出了一个测试系统的瞬态热行为。对于一步预测,网络结果的准确性是显著的(0.003%的误差)。经过400个时间步长,累计误差达到0.78%。每个时间步长的计算时间为50ms。减少累积误差是我们当前工作的重点。在未来,像我们所展示的这样的工具可以提供几乎瞬时的系统热行为近似,可用于设计优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信