Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials

T. Cao, Meng Lian, Xieyu Chen, Libang Mao, Kuan Liu, Jingyuan Jia, Ying Su, H. Ren, Shoujun Zhang, Yihan Xu, Jiajia Chen, Z. Tian, Dongming Guo
{"title":"Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials","authors":"T. Cao, Meng Lian, Xieyu Chen, Libang Mao, Kuan Liu, Jingyuan Jia, Ying Su, H. Ren, Shoujun Zhang, Yihan Xu, Jiajia Chen, Z. Tian, Dongming Guo","doi":"10.29026/oes.2022.210010","DOIUrl":null,"url":null,"abstract":"Metamaterials composed of metallic antennae arrays are used as they possess extraordinary optical transmission (EOT) in the terahertz (THz) region, whereby a giant forward light propagation can be created using constructive interference of tunneling surface plasmonic waves. However, numerous applications of THz meta-devices demand an active manipula-tion of the THz beam in free space. Although some studies have been carried out to control the EOT for the THz region, few of these are based upon electrical modulation of the EOT phenomenon, and novel strategies are required for actively and dynamically reconfigurable EOT meta-devices. In this work, we experimentally present that the EOT resonance can be coupled to optically reconfigurable chalcogenide metamaterials which offers a reversible all-optical control of the THz light. A modulation efficiency of 88% in transmission at 0.85 THz is experimentally observed using the EOT metamaterials, which is composed of a gold (Au) circular aperture array sitting on a non-volatile chalcogenide phase change material (Ge 2 Sb 2 Te 5 ) film. This comes up with a robust and ultrafast reconfigurable EOT over 20 times of switching, excited by a nanosecond pulsed laser. The measured data have a good agreement with finite-element-method numerical simulation. This work promises THz modulators with significant on/off ratios and fast speeds. extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1 , 210010 (2022).","PeriodicalId":208845,"journal":{"name":"Opto-Electronic Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29026/oes.2022.210010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Metamaterials composed of metallic antennae arrays are used as they possess extraordinary optical transmission (EOT) in the terahertz (THz) region, whereby a giant forward light propagation can be created using constructive interference of tunneling surface plasmonic waves. However, numerous applications of THz meta-devices demand an active manipula-tion of the THz beam in free space. Although some studies have been carried out to control the EOT for the THz region, few of these are based upon electrical modulation of the EOT phenomenon, and novel strategies are required for actively and dynamically reconfigurable EOT meta-devices. In this work, we experimentally present that the EOT resonance can be coupled to optically reconfigurable chalcogenide metamaterials which offers a reversible all-optical control of the THz light. A modulation efficiency of 88% in transmission at 0.85 THz is experimentally observed using the EOT metamaterials, which is composed of a gold (Au) circular aperture array sitting on a non-volatile chalcogenide phase change material (Ge 2 Sb 2 Te 5 ) film. This comes up with a robust and ultrafast reconfigurable EOT over 20 times of switching, excited by a nanosecond pulsed laser. The measured data have a good agreement with finite-element-method numerical simulation. This work promises THz modulators with significant on/off ratios and fast speeds. extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1 , 210010 (2022).
利用硫化物超材料的多周期可重构太赫兹超常光传输
由金属天线阵列组成的超材料在太赫兹(THz)区域具有非凡的光传输(EOT),利用隧道表面等离子体波的构形干涉可以产生巨大的正向光传播。然而,许多太赫兹元器件的应用需要在自由空间中对太赫兹波束进行主动操纵。虽然已经进行了一些研究来控制太赫兹区域的EOT,但这些研究很少是基于电调制的EOT现象,并且主动和动态可重构的EOT元器件需要新的策略。在这项工作中,我们通过实验证明了EOT共振可以耦合到光学可重构的硫系超材料上,从而提供了对太赫兹光的可逆全光控制。实验发现,在0.85 THz下,由金(Au)圆孔径阵列组成的EOT超材料位于非挥发性硫系相变材料(g2sb2t5)薄膜上,其传输调制效率为88%。这提出了一个强大的、超快的、可重构的EOT,由纳秒脉冲激光激发,超过20次的开关。实测数据与有限元数值模拟结果吻合较好。这项工作保证了太赫兹调制器具有显著的开/关比和快速的速度。利用硫系超材料实现非凡的光传输。光电科学1,210010(2022)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信