An evolutionary genetic neural networks for problems without prior knowledge

H. U. Ha, Jong-Kook Kim
{"title":"An evolutionary genetic neural networks for problems without prior knowledge","authors":"H. U. Ha, Jong-Kook Kim","doi":"10.1109/ICNC.2014.6975800","DOIUrl":null,"url":null,"abstract":"Many problems are now being solved using a version of a neural network (NN). These NN are usually constructed using genetic neural networks (GNNs) for optimizing variables in the NN using a fixed structure or neural evolution (NE) to optimize the structure of the NN using fixed values for the variables in the NN. Thus, previous methods need experienced knowledge of the problem such that either the structure or variables are known to construct a meaningful NN. This paper presents a method called leap evolution adopted neural network (LEANN) that optimizes the NN without prior knowledge such as the values of the variables and the structure of the NN for a given problem. Our method in this paper finds an optimal structure and variables of the NN successfully for the XOR gate problem.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many problems are now being solved using a version of a neural network (NN). These NN are usually constructed using genetic neural networks (GNNs) for optimizing variables in the NN using a fixed structure or neural evolution (NE) to optimize the structure of the NN using fixed values for the variables in the NN. Thus, previous methods need experienced knowledge of the problem such that either the structure or variables are known to construct a meaningful NN. This paper presents a method called leap evolution adopted neural network (LEANN) that optimizes the NN without prior knowledge such as the values of the variables and the structure of the NN for a given problem. Our method in this paper finds an optimal structure and variables of the NN successfully for the XOR gate problem.
无先验知识问题的进化遗传神经网络
现在,许多问题正在使用神经网络(NN)的一个版本来解决。这些神经网络通常使用遗传神经网络(gnn)构建,用于使用固定结构优化神经网络中的变量,或者使用神经进化(NE)使用神经网络中变量的固定值来优化神经网络的结构。因此,以前的方法需要对问题有经验的了解,以便结构或变量已知来构建有意义的神经网络。本文提出了一种基于神经网络的跳跃进化方法(LEANN),该方法在不知道给定问题的变量值和神经网络结构等先验知识的情况下对神经网络进行优化。本文的方法成功地为异或门问题找到了最优的神经网络结构和变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信