Deep Learning Aided Channel Estimation in Intelligent Reflecting Surfaces

Ural Mutlu, Y. Kabalci
{"title":"Deep Learning Aided Channel Estimation in Intelligent Reflecting Surfaces","authors":"Ural Mutlu, Y. Kabalci","doi":"10.1109/GPECOM58364.2023.10175750","DOIUrl":null,"url":null,"abstract":"Intelligent Reflecting Surfaces (IRS) consist of multiple independently controllable passive reflecting elements that can change the phase and the amplitude of the reflected signals to achieve passive beamforming. To facilitate passive beamforming, channel state information (CSI) needs to be available at the Base Station so that the optimum reflection pattern can be calculated. Therefore, the objective of this research is to present a Deep Learning (DL) based approach to improve the accuracy of the channel estimation in an IRS aided Multiple Input Single Output - Orthogonal Frequency Division Multiplexing (MISO-OFDM) wireless network. A Convolutional Neural Network (CNN) that treats OFDM frames as images is adapted for IRS and applied to the direct and cascaded channels. The CNN presented in the study is trained with channel coefficients obtained by Least Squares (LS) method and Discrete Fourier Transform (DFT) as the reflection pattern at the IRS. The results show that the CNN improves channel estimation efficiency by reducing the effects of noise and improving the Normalized Mean Square Error (NMSE) parameters.","PeriodicalId":288300,"journal":{"name":"2023 5th Global Power, Energy and Communication Conference (GPECOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GPECOM58364.2023.10175750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent Reflecting Surfaces (IRS) consist of multiple independently controllable passive reflecting elements that can change the phase and the amplitude of the reflected signals to achieve passive beamforming. To facilitate passive beamforming, channel state information (CSI) needs to be available at the Base Station so that the optimum reflection pattern can be calculated. Therefore, the objective of this research is to present a Deep Learning (DL) based approach to improve the accuracy of the channel estimation in an IRS aided Multiple Input Single Output - Orthogonal Frequency Division Multiplexing (MISO-OFDM) wireless network. A Convolutional Neural Network (CNN) that treats OFDM frames as images is adapted for IRS and applied to the direct and cascaded channels. The CNN presented in the study is trained with channel coefficients obtained by Least Squares (LS) method and Discrete Fourier Transform (DFT) as the reflection pattern at the IRS. The results show that the CNN improves channel estimation efficiency by reducing the effects of noise and improving the Normalized Mean Square Error (NMSE) parameters.
智能反射面的深度学习辅助信道估计
智能反射面由多个独立可控的被动反射元件组成,通过改变反射信号的相位和幅度来实现被动波束形成。为了促进无源波束形成,需要在基站获得信道状态信息(CSI),以便计算最佳反射方向图。因此,本研究的目的是提出一种基于深度学习(DL)的方法来提高IRS辅助多输入单输出正交频分复用(MISO-OFDM)无线网络中信道估计的准确性。将OFDM帧作为图像处理的卷积神经网络(CNN)适用于IRS,并应用于直接信道和级联信道。本文提出的CNN以最小二乘(LS)方法得到的通道系数和离散傅立叶变换(DFT)作为IRS处的反射图进行训练。结果表明,CNN通过降低噪声影响和改善归一化均方误差(NMSE)参数,提高了信道估计效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信