Improving Vietnamese web page clustering by combining neighbors' content and using iterative feature selection

Le Viet Hung, N. K. Anh, N. H. Dang
{"title":"Improving Vietnamese web page clustering by combining neighbors' content and using iterative feature selection","authors":"Le Viet Hung, N. K. Anh, N. H. Dang","doi":"10.1145/2350716.2350726","DOIUrl":null,"url":null,"abstract":"Web page clustering is a fundamental technique to offer a solution for data management, information locating and its interpretation of Web data and to facilitate users for navigation, discrimination and understanding. Most existing clustering algorithms can't adapt well to Web page clustering directly in terms of efficiency and effectiveness due to the problems of high dimensionality and data sparseness. Furthermore, the uncontrolled nature of web content presents additional challenges to web page clustering, whereas the interconnected characteristic of hypertext can provide useful information for the process. To address this problem, we propose a new Web page clustering method with combining neighbors' content to overcome data sparseness and using Iterative Feature Selection to remove noisy and redundant features and to improve the performance of clustering algorithm. Experimental results show that the proposed method significantly improves the performance of the Vietnamese web page clustering with a relatively small number of good descriptive features for web pages.","PeriodicalId":208300,"journal":{"name":"Proceedings of the 3rd Symposium on Information and Communication Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2350716.2350726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Web page clustering is a fundamental technique to offer a solution for data management, information locating and its interpretation of Web data and to facilitate users for navigation, discrimination and understanding. Most existing clustering algorithms can't adapt well to Web page clustering directly in terms of efficiency and effectiveness due to the problems of high dimensionality and data sparseness. Furthermore, the uncontrolled nature of web content presents additional challenges to web page clustering, whereas the interconnected characteristic of hypertext can provide useful information for the process. To address this problem, we propose a new Web page clustering method with combining neighbors' content to overcome data sparseness and using Iterative Feature Selection to remove noisy and redundant features and to improve the performance of clustering algorithm. Experimental results show that the proposed method significantly improves the performance of the Vietnamese web page clustering with a relatively small number of good descriptive features for web pages.
结合邻域内容和迭代特征选择改进越南语网页聚类
网页聚类是为数据管理、信息定位及其对Web数据的解释提供解决方案,方便用户导航、辨别和理解的一种基本技术。现有的聚类算法大多存在高维数和数据稀疏性问题,不能很好地直接适应网页聚类的效率和有效性。此外,网页内容不受控制的特性给网页聚类带来了额外的挑战,而超文本的互联特性可以为这一过程提供有用的信息。为了解决这一问题,我们提出了一种新的网页聚类方法,通过结合邻居的内容来克服数据稀疏性,并使用迭代特征选择来去除噪声和冗余特征,从而提高聚类算法的性能。实验结果表明,该方法在使用相对较少的网页描述性特征的情况下,显著提高了越南语网页聚类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信