{"title":"Autonomous unmanned aerial vehicle flight control using multi-task deep neural network for exploring indoor environments","authors":"Viet Duc Bui, T. Shirakawa, Hiroshi Sato","doi":"10.1080/18824889.2022.2087413","DOIUrl":null,"url":null,"abstract":"In recent years, owing to the advance in image processing using deep learning, autonomous unmanned aerial vehicle (UAV) navigation based on image recognition has become possible. However, several image-based deep learning methods focus primarily on single-task autonomous UAV systems, which cannot perform other required tasks. Meanwhile, deep learning methods based on multi-task learning, which are suitable for multi-tasking autonomous UAV systems, have not been sufficiently researched. Therefore, in this study, we propose a UAV flight control method that can enable correction of a UAV's self-position, self-direction, and recognition/selection of multiple movement directions using multi-task learning for exploring an unknown indoor environment, which is based only on information from monocular camera images.","PeriodicalId":413922,"journal":{"name":"SICE journal of control, measurement, and system integration","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE journal of control, measurement, and system integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/18824889.2022.2087413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, owing to the advance in image processing using deep learning, autonomous unmanned aerial vehicle (UAV) navigation based on image recognition has become possible. However, several image-based deep learning methods focus primarily on single-task autonomous UAV systems, which cannot perform other required tasks. Meanwhile, deep learning methods based on multi-task learning, which are suitable for multi-tasking autonomous UAV systems, have not been sufficiently researched. Therefore, in this study, we propose a UAV flight control method that can enable correction of a UAV's self-position, self-direction, and recognition/selection of multiple movement directions using multi-task learning for exploring an unknown indoor environment, which is based only on information from monocular camera images.