A Fast Feature Selection Model for Online Handwriting Symbol Recognition

B. Huang, Mohand Tahar Kechadi
{"title":"A Fast Feature Selection Model for Online Handwriting Symbol Recognition","authors":"B. Huang, Mohand Tahar Kechadi","doi":"10.1109/ICMLA.2006.6","DOIUrl":null,"url":null,"abstract":"Many feature selection models have been proposed for online handwriting recognition. However, most of them require expensive computational overhead, or inaccurately find an improper feature set which leads to unacceptable recognition rates. This paper presents a new efficient feature selection model for handwriting symbol recognition by using an improved sequential floating search method coupled with a hybrid classifier, which is obtained by combining hidden Markov models with multilayer forward network. The effectiveness of proposed method is verified by comprehensive experiments based on UNIPEN database","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Many feature selection models have been proposed for online handwriting recognition. However, most of them require expensive computational overhead, or inaccurately find an improper feature set which leads to unacceptable recognition rates. This paper presents a new efficient feature selection model for handwriting symbol recognition by using an improved sequential floating search method coupled with a hybrid classifier, which is obtained by combining hidden Markov models with multilayer forward network. The effectiveness of proposed method is verified by comprehensive experiments based on UNIPEN database
一种用于在线手写符号识别的快速特征选择模型
针对在线手写识别,已经提出了许多特征选择模型。然而,大多数方法都需要昂贵的计算开销,或者不能准确地找到不合适的特征集,从而导致不可接受的识别率。将隐马尔可夫模型与多层前向网络相结合,提出了一种改进的顺序浮动搜索法与混合分类器相结合的高效手写符号特征选择模型。基于UNIPEN数据库的综合实验验证了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信