Periocular Recognition in the Wild with Orthogonal Combination of Local Binary Coded Pattern in Dual-stream Convolutional Neural Network

L. Tiong, A. Teoh, Yunli Lee
{"title":"Periocular Recognition in the Wild with Orthogonal Combination of Local Binary Coded Pattern in Dual-stream Convolutional Neural Network","authors":"L. Tiong, A. Teoh, Yunli Lee","doi":"10.1109/ICB45273.2019.8987278","DOIUrl":null,"url":null,"abstract":"In spite of the advancements made in the periocular recognition, the dataset and periocular recognition in the wild remains a challenge. In this paper, we propose a multilayer fusion approach by means of a pair of shared parameters (dual-stream) convolutional neural network where each network accepts RGB data and a novel colour-based texture descriptor, namely Orthogonal Combination-Local Binary Coded Pattern (OC-LBCP) for periocular recognition in the wild. Specifically, two distinct late-fusion layers are introduced in the dual-stream network to aggregate the RGB data and OC-LBCP. Thus, the network beneficial from this new feature of the late-fusion layers for accuracy performance gain. We also introduce and share a new dataset for periocular in the wild, namely Ethnic-ocular dataset for benchmarking. The proposed network has also been assessed on one publicly available dataset, namely UBIPr. The proposed network outperforms several competing approaches on these datasets.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In spite of the advancements made in the periocular recognition, the dataset and periocular recognition in the wild remains a challenge. In this paper, we propose a multilayer fusion approach by means of a pair of shared parameters (dual-stream) convolutional neural network where each network accepts RGB data and a novel colour-based texture descriptor, namely Orthogonal Combination-Local Binary Coded Pattern (OC-LBCP) for periocular recognition in the wild. Specifically, two distinct late-fusion layers are introduced in the dual-stream network to aggregate the RGB data and OC-LBCP. Thus, the network beneficial from this new feature of the late-fusion layers for accuracy performance gain. We also introduce and share a new dataset for periocular in the wild, namely Ethnic-ocular dataset for benchmarking. The proposed network has also been assessed on one publicly available dataset, namely UBIPr. The proposed network outperforms several competing approaches on these datasets.
基于双流卷积神经网络局部二值编码模式正交组合的野外眼周识别
尽管在眼周识别方面取得了一些进展,但野外数据集和眼周识别仍然是一个挑战。在本文中,我们提出了一种多层融合方法,通过一对共享参数(双流)卷积神经网络,其中每个网络接受RGB数据和一种新的基于颜色的纹理描述符,即正交组合-局部二进制编码模式(OC-LBCP),用于野外眼周识别。具体来说,在双流网络中引入了两个不同的后期融合层来聚合RGB数据和OC-LBCP。因此,网络受益于后期融合层的这一新特性,以提高精度和性能。我们还介绍并分享了一种新的野生眼周数据集,即用于基准测试的ethical -ocular数据集。提议的网络也在一个公开可用的数据集上进行了评估,即UBIPr。所提出的网络在这些数据集上优于几种竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信