Rectangular Empty Parking Space Detection using SIFT based Classification

H. Bhaskar, N. Werghi, S. Al-Mansoori
{"title":"Rectangular Empty Parking Space Detection using SIFT based Classification","authors":"H. Bhaskar, N. Werghi, S. Al-Mansoori","doi":"10.5220/0003358702140220","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a method of combining rectangle detection and scale invariant feature transform (SIFT) analysis for empty parking space detection. A parking space in a parking lot is represented as a rectangular region of pixels in an image captured from an aerial camera. Detecting rectangular parking spaces in a new image involves an alternating scheme of extracting peaks from the Radon transform for the whole image and filtering them against specific geometric and spatial constraints. We then compute SIFT descriptors from these detected rectangular parking spaces and further apply supervised classification methods for detecting empty parking spaces. We demonstrate the performance of our model on several synthetic and real data.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003358702140220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we describe a method of combining rectangle detection and scale invariant feature transform (SIFT) analysis for empty parking space detection. A parking space in a parking lot is represented as a rectangular region of pixels in an image captured from an aerial camera. Detecting rectangular parking spaces in a new image involves an alternating scheme of extracting peaks from the Radon transform for the whole image and filtering them against specific geometric and spatial constraints. We then compute SIFT descriptors from these detected rectangular parking spaces and further apply supervised classification methods for detecting empty parking spaces. We demonstrate the performance of our model on several synthetic and real data.
基于SIFT分类的矩形空车位检测
本文提出了一种将矩形检测与尺度不变特征变换(SIFT)分析相结合的空车位检测方法。停车场中的停车位表示为从航空相机捕获的图像中的矩形像素区域。在新图像中检测矩形停车位涉及到从整个图像的Radon变换中提取峰值并根据特定的几何和空间约束对其进行过滤的交替方案。然后,我们从这些检测到的矩形停车位中计算SIFT描述子,并进一步应用监督分类方法来检测空停车位。我们在几个合成数据和实际数据上验证了模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信