A. Marcellis, E. Palange, M. Faccio, Guido Di Patrizio Stanchieri, T. Constandinou
{"title":"A 250Mbps 24pJ/bit UWB-inspired optical communication system for bioimplants","authors":"A. Marcellis, E. Palange, M. Faccio, Guido Di Patrizio Stanchieri, T. Constandinou","doi":"10.1109/BIOCAS.2017.8325081","DOIUrl":null,"url":null,"abstract":"This paper presents an optical communication system, implementing a UWB-inspired pulsed coding technique, for emerging high throughput bio-applications such as brain machine interfaces. The proposed solution employs sub-nanosecond laser pulses that, compared to the state-of-the-art, allows for high bit rate transmissions and reduced power consumption. The overall architecture consist of a transmitter and receiver that employ a pulsed semiconductor laser and a small sensitive area photodiode. This can allow for CMOS integration into a compact silicon footprint (estimated lower than 1 mm2 in a 0.18 μm technology). The analogue circuits presented herein have been implemented using discrete off-the-shelf components. These provide the bias and drive signals for laser pulse generation, photodiode signal detection and conditioning. Moreover, the digital sub-system for data coding and decoding processes have been implemented on a FPGA board through VHDL description language. Experimental results validate the overall functionality of the proposed system using a diffuser between transmitter and receiver to emulate skin/tissue. This shows the capability of operating at bit rates up to 250 Mbps achieving BER less than 10−9 and power efficiency as low as 24pJ/bit. These results enable, for example, the transmission of a 1000-channel neural recording system sampled at 16kHz with 16-bit resolution.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents an optical communication system, implementing a UWB-inspired pulsed coding technique, for emerging high throughput bio-applications such as brain machine interfaces. The proposed solution employs sub-nanosecond laser pulses that, compared to the state-of-the-art, allows for high bit rate transmissions and reduced power consumption. The overall architecture consist of a transmitter and receiver that employ a pulsed semiconductor laser and a small sensitive area photodiode. This can allow for CMOS integration into a compact silicon footprint (estimated lower than 1 mm2 in a 0.18 μm technology). The analogue circuits presented herein have been implemented using discrete off-the-shelf components. These provide the bias and drive signals for laser pulse generation, photodiode signal detection and conditioning. Moreover, the digital sub-system for data coding and decoding processes have been implemented on a FPGA board through VHDL description language. Experimental results validate the overall functionality of the proposed system using a diffuser between transmitter and receiver to emulate skin/tissue. This shows the capability of operating at bit rates up to 250 Mbps achieving BER less than 10−9 and power efficiency as low as 24pJ/bit. These results enable, for example, the transmission of a 1000-channel neural recording system sampled at 16kHz with 16-bit resolution.