A Code-Based Distributed Gradient Descent Method

Elie Atallah, N. Rahnavard
{"title":"A Code-Based Distributed Gradient Descent Method","authors":"Elie Atallah, N. Rahnavard","doi":"10.1109/ALLERTON.2018.8635869","DOIUrl":null,"url":null,"abstract":"Distributed gradient descent is an optimization algorithm that is used to solve a minimization problem distributed over a network through minimizing local functions that sum up to form the overall objective function. These local functions fi contribute to local gradients adding up incrementally to form the overall gradient. Recently, the gradient coding paradigm was introduced for networks with a centralized fusion center to resolve the problem of straggler nodes. Through introducing some kind of redundancy on each node, such coding schemes are utilized to form new coded local functions gi from the original local functions fi. In this work, we consider a distributed network with a defined network topology and no fusion center. At each node, linear combinations of the local coded gradients $\\nabla\\overline{g}_{i}$ can be constructed to form the overall gradient. Our iterative method, referred to as Code-Based Distributed Gradient Descent (CDGD), updates each node's local estimate by applying an adequate weighing scheme. This scheme adapts the coded local gradient descent step along with local estimates from neighboring nodes. We provide the convergence analysis for CDGD and we analytically show that we enhance the convergence rate by a scaling factor over conventional incremental methods without any predefined tuning. Furthermore, we demonstrate through numerical results significant performance and enhancements for convergence rates.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Distributed gradient descent is an optimization algorithm that is used to solve a minimization problem distributed over a network through minimizing local functions that sum up to form the overall objective function. These local functions fi contribute to local gradients adding up incrementally to form the overall gradient. Recently, the gradient coding paradigm was introduced for networks with a centralized fusion center to resolve the problem of straggler nodes. Through introducing some kind of redundancy on each node, such coding schemes are utilized to form new coded local functions gi from the original local functions fi. In this work, we consider a distributed network with a defined network topology and no fusion center. At each node, linear combinations of the local coded gradients $\nabla\overline{g}_{i}$ can be constructed to form the overall gradient. Our iterative method, referred to as Code-Based Distributed Gradient Descent (CDGD), updates each node's local estimate by applying an adequate weighing scheme. This scheme adapts the coded local gradient descent step along with local estimates from neighboring nodes. We provide the convergence analysis for CDGD and we analytically show that we enhance the convergence rate by a scaling factor over conventional incremental methods without any predefined tuning. Furthermore, we demonstrate through numerical results significant performance and enhancements for convergence rates.
基于代码的分布式梯度下降方法
分布式梯度下降算法是一种通过最小化局部函数来解决分布在网络上的最小化问题的优化算法,这些局部函数之和形成总体目标函数。这些局部函数对局部梯度有贡献,逐渐加起来形成整体梯度。近年来,为了解决分散节点的问题,在具有集中融合中心的网络中引入了梯度编码范式。这些编码方案通过在每个节点上引入某种冗余,将原有的局部函数fi编码为新的局部函数gi。在这项工作中,我们考虑了一个具有定义的网络拓扑和无融合中心的分布式网络。在每个节点上,可以构造局部编码梯度$\nabla\overline{g}_{i}$的线性组合,形成整体梯度。我们的迭代方法,称为基于代码的分布式梯度下降(CDGD),通过应用适当的加权方案来更新每个节点的局部估计。该方案采用了编码的局部梯度下降步骤以及邻近节点的局部估计。我们提供了CDGD的收敛性分析,并分析表明,我们在没有任何预定义调优的情况下,比传统的增量方法提高了一个比例因子的收敛率。此外,我们通过数值结果证明了显著的性能和收敛速度的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信