Double Exponential-Smoothing Neural Network for Foreign Exchange Rate Forecasting

Muladi, Sherly Allsa Siregar, A. Wibawa
{"title":"Double Exponential-Smoothing Neural Network for Foreign Exchange Rate Forecasting","authors":"Muladi, Sherly Allsa Siregar, A. Wibawa","doi":"10.1109/EIConCIT.2018.8878591","DOIUrl":null,"url":null,"abstract":"One of the most used method for forecasting is Artificial Neural Network (ANN). The success of ANN to solve the problem depends on the input data. Improving data quality can be done by smoothing the input data. In this study, smoothing data will be done using Exponential Smoothing (ES) approach. We use exchange rate of Indonesia Rupiah (IDR) against US Dollar (USD) from January 2016 to December 2017 for the data research. This research the forecasting using ANN with smoothing process in the data input using Double Exponential Smoothing (DES) will compared with the forecasting using ANN with original data input and forecasting using ANN with smoothing process in the data input using Single Exponential Smoothing (SES) as a model. The model’s performance will have measured using error value and execution time. This research concludes that Double Exponential Smoothing (DES) method can improve the performance of ANN on IDR/USD exchange rate forecasting, it produces 0.530% of MAPE values and takes 561s for time execution, and also, we conclude that DES is better than SES to improve ANN performance for exchange rate forecasting.","PeriodicalId":424909,"journal":{"name":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConCIT.2018.8878591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

One of the most used method for forecasting is Artificial Neural Network (ANN). The success of ANN to solve the problem depends on the input data. Improving data quality can be done by smoothing the input data. In this study, smoothing data will be done using Exponential Smoothing (ES) approach. We use exchange rate of Indonesia Rupiah (IDR) against US Dollar (USD) from January 2016 to December 2017 for the data research. This research the forecasting using ANN with smoothing process in the data input using Double Exponential Smoothing (DES) will compared with the forecasting using ANN with original data input and forecasting using ANN with smoothing process in the data input using Single Exponential Smoothing (SES) as a model. The model’s performance will have measured using error value and execution time. This research concludes that Double Exponential Smoothing (DES) method can improve the performance of ANN on IDR/USD exchange rate forecasting, it produces 0.530% of MAPE values and takes 561s for time execution, and also, we conclude that DES is better than SES to improve ANN performance for exchange rate forecasting.
双指数平滑神经网络用于外汇汇率预测
人工神经网络(ANN)是最常用的预测方法之一。人工神经网络解决问题的成功与否取决于输入数据。可以通过平滑输入数据来提高数据质量。在本研究中,平滑数据将使用指数平滑(ES)方法进行。我们使用2016年1月至2017年12月期间印尼卢比(IDR)对美元(USD)的汇率进行数据研究。本研究将采用双指数平滑法(DES)对数据输入进行平滑处理的人工神经网络进行预测,并与原始数据输入的人工神经网络预测和采用单指数平滑法(SES)对数据输入进行平滑处理的人工神经网络进行预测进行比较。模型的性能将使用错误值和执行时间进行测量。本研究得出双指数平滑(DES)方法可以提高人工神经网络在印尼盾/美元汇率预测上的性能,其产生的MAPE值为0.530%,执行时间为561秒,并且我们得出DES方法在提高人工神经网络的汇率预测性能方面优于SES方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信