STIDes Revisited - Tackling Global Time Shifts and Scaling

Marc Haßler, André Pomp, Christian Kohlschein, Tobias Meisen
{"title":"STIDes Revisited - Tackling Global Time Shifts and Scaling","authors":"Marc Haßler, André Pomp, Christian Kohlschein, Tobias Meisen","doi":"10.1109/INNOVATIONS.2018.8605951","DOIUrl":null,"url":null,"abstract":"In times where large amounts of time-dependent data is generated, the importance of time interval data sets in general and similarity analyses on these in particular continues to increase. In this context, various approaches regarding the comparability of two time interval data sets have been developed in recent years. The STIDes approach as a bottom up approach offers on the one hand the possibility to focus on individual properties of the intervals, on the other hand it allows time delays or scaling to be taken into consideration. In this paper, we take a closer look at the management of time delays and different scales and show that a similarity analysis using STIDes can be completed in polynomial time. Furthermore, we improve the handling of cardinality differences in the data sets to be compared.","PeriodicalId":319472,"journal":{"name":"2018 International Conference on Innovations in Information Technology (IIT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Innovations in Information Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INNOVATIONS.2018.8605951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In times where large amounts of time-dependent data is generated, the importance of time interval data sets in general and similarity analyses on these in particular continues to increase. In this context, various approaches regarding the comparability of two time interval data sets have been developed in recent years. The STIDes approach as a bottom up approach offers on the one hand the possibility to focus on individual properties of the intervals, on the other hand it allows time delays or scaling to be taken into consideration. In this paper, we take a closer look at the management of time delays and different scales and show that a similarity analysis using STIDes can be completed in polynomial time. Furthermore, we improve the handling of cardinality differences in the data sets to be compared.
重新访问STIDes -处理全局时间偏移和缩放
在生成大量时间相关数据的情况下,时间间隔数据集的重要性,特别是对这些数据集进行相似性分析的重要性不断增加。在这种背景下,近年来发展了各种关于两个时间间隔数据集的可比性的方法。STIDes方法作为一种自下而上的方法,一方面提供了关注间隔的单个属性的可能性,另一方面它允许考虑时间延迟或缩放。在本文中,我们仔细研究了时间延迟和不同尺度的管理,并表明使用STIDes可以在多项式时间内完成相似性分析。此外,我们改进了要比较的数据集中基数差异的处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信