Trading via image classification

N. Cohen, T. Balch, M. Veloso
{"title":"Trading via image classification","authors":"N. Cohen, T. Balch, M. Veloso","doi":"10.1145/3383455.3422544","DOIUrl":null,"url":null,"abstract":"The art of systematic financial trading evolved with an array of approaches, ranging from simple strategies to complex algorithms, all relying primarily on aspects of time-series analysis (e.g., Murphy, 1999; De Prado, 2018; Tsay, 2005). After visiting the trading floor of a leading financial institution, we noticed that traders always execute their trade orders while observing images of financial time-series on their screens. In this work, we build upon image recognition's success (e.g., Krizhevsky et al., 2012; Szegedy et al., 2015; Zeiler and Fergus, 2014; Wang et al., 2017; Koch et al., 2015; LeCun et al., 2015) and examine the value of transforming the traditional time-series analysis to that of image classification. We create a large sample of financial time-series images encoded as candlestick (Box and Whisker) charts and label the samples following three algebraically-defined binary trade strategies (Murphy, 1999). Using the images, we train over a dozen machine-learning classification models and find that the algorithms efficiently recover the complicated, multiscale label-generating rules when the data is visually represented. We suggest that the transformation of continuous numeric time-series classification problem to a vision problem is useful for recovering signals typical of technical analysis.","PeriodicalId":447950,"journal":{"name":"Proceedings of the First ACM International Conference on AI in Finance","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3383455.3422544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The art of systematic financial trading evolved with an array of approaches, ranging from simple strategies to complex algorithms, all relying primarily on aspects of time-series analysis (e.g., Murphy, 1999; De Prado, 2018; Tsay, 2005). After visiting the trading floor of a leading financial institution, we noticed that traders always execute their trade orders while observing images of financial time-series on their screens. In this work, we build upon image recognition's success (e.g., Krizhevsky et al., 2012; Szegedy et al., 2015; Zeiler and Fergus, 2014; Wang et al., 2017; Koch et al., 2015; LeCun et al., 2015) and examine the value of transforming the traditional time-series analysis to that of image classification. We create a large sample of financial time-series images encoded as candlestick (Box and Whisker) charts and label the samples following three algebraically-defined binary trade strategies (Murphy, 1999). Using the images, we train over a dozen machine-learning classification models and find that the algorithms efficiently recover the complicated, multiscale label-generating rules when the data is visually represented. We suggest that the transformation of continuous numeric time-series classification problem to a vision problem is useful for recovering signals typical of technical analysis.
通过图像分类进行交易
系统金融交易的艺术随着一系列方法的发展而发展,从简单的策略到复杂的算法,所有这些都主要依赖于时间序列分析的各个方面(例如,Murphy, 1999;De Prado, 2018;-蔡,2005)。在参观了一家主要金融机构的交易大厅后,我们注意到交易员总是一边执行交易指令,一边观察屏幕上的金融时间序列图像。在这项工作中,我们以图像识别的成功为基础(例如,Krizhevsky等人,2012;Szegedy等,2015;Zeiler and Fergus, 2014;Wang et al., 2017;Koch等人,2015;LeCun et al., 2015),并检验将传统的时间序列分析转化为图像分类分析的价值。我们创建了一个大的金融时间序列图像样本,编码为烛台(盒状和须状)图表,并根据三种代数定义的二元交易策略对样本进行标记(Murphy, 1999)。使用这些图像,我们训练了十几个机器学习分类模型,并发现当数据被可视化表示时,这些算法有效地恢复了复杂的、多尺度的标签生成规则。我们认为,将连续数值时间序列分类问题转化为视觉问题对于恢复典型的技术分析信号是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信