Classification and clustering to identify spoken dialects in Indonesian

Jacqueline Ibrahim, D. Lestari
{"title":"Classification and clustering to identify spoken dialects in Indonesian","authors":"Jacqueline Ibrahim, D. Lestari","doi":"10.1109/ICODSE.2017.8285852","DOIUrl":null,"url":null,"abstract":"This paper explains classification using Support Vector Machines (SVM) technique and clustering using K-means technique in identifying eight spoken dialects in Indonesian language. Dialect identification is important to build a better Automatic Speech Recognition system. The experiment in this research is divided into using three features of sound; Mel Frequency Cepstral Coefficient (MFCC), spectral flux, and spectral centroid, and compares it to model with MFCC features only. For methods, it uses one-against-one and all-at-once as comparison. The best result is from using SVM one-against-one with three features which gives 55%.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper explains classification using Support Vector Machines (SVM) technique and clustering using K-means technique in identifying eight spoken dialects in Indonesian language. Dialect identification is important to build a better Automatic Speech Recognition system. The experiment in this research is divided into using three features of sound; Mel Frequency Cepstral Coefficient (MFCC), spectral flux, and spectral centroid, and compares it to model with MFCC features only. For methods, it uses one-against-one and all-at-once as comparison. The best result is from using SVM one-against-one with three features which gives 55%.
印尼语口语方言的分类与聚类
本文介绍了使用支持向量机(SVM)技术进行分类,并使用K-means技术进行聚类,以识别印度尼西亚语的8种口语方言。方言识别是构建更好的语音自动识别系统的重要环节。本研究的实验分为利用声音的三个特征;Mel频率倒谱系数(MFCC)、谱通量和谱质心,并将其与仅具有MFCC特征的模型进行比较。对于方法,它使用一对一和一次性全部进行比较。最好的结果是使用支持向量机一对一的三个特征,给出55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信