Towards Understanding Machine Learning Testing in Practise

Arumoy Shome, Luís Cruz, A. Deursen
{"title":"Towards Understanding Machine Learning Testing in Practise","authors":"Arumoy Shome, Luís Cruz, A. Deursen","doi":"10.1109/CAIN58948.2023.00028","DOIUrl":null,"url":null,"abstract":"Visualisations drive all aspects of the Machine Learning (ML) Development Cycle but remain a vastly untapped resource by the research community. ML testing is a highly interactive and cognitive process which demands a human-in-the-loop approach. Besides writing tests for the code base, bulk of the evaluation requires application of domain expertise to generate and interpret visualisations. To gain a deeper insight into the process of testing ML systems, we propose to study visualisations of ML pipelines by mining Jupyter notebooks. We propose a two prong approach in conducting the analysis. First, gather general insights and trends using a qualitative study of a smaller sample of notebooks. And then use the knowledge gained from the qualitative study to design an empirical study using a larger sample of notebooks. Computational notebooks provide a rich source of information in three formats—text, code and images. We hope to utilise existing work in image analysis and Natural Language Processing for text and code, to analyse the information present in notebooks. We hope to gain a new perspective into program comprehension and debugging in the context of ML testing.","PeriodicalId":175580,"journal":{"name":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIN58948.2023.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visualisations drive all aspects of the Machine Learning (ML) Development Cycle but remain a vastly untapped resource by the research community. ML testing is a highly interactive and cognitive process which demands a human-in-the-loop approach. Besides writing tests for the code base, bulk of the evaluation requires application of domain expertise to generate and interpret visualisations. To gain a deeper insight into the process of testing ML systems, we propose to study visualisations of ML pipelines by mining Jupyter notebooks. We propose a two prong approach in conducting the analysis. First, gather general insights and trends using a qualitative study of a smaller sample of notebooks. And then use the knowledge gained from the qualitative study to design an empirical study using a larger sample of notebooks. Computational notebooks provide a rich source of information in three formats—text, code and images. We hope to utilise existing work in image analysis and Natural Language Processing for text and code, to analyse the information present in notebooks. We hope to gain a new perspective into program comprehension and debugging in the context of ML testing.
在实践中理解机器学习测试
可视化驱动机器学习(ML)开发周期的各个方面,但仍然是研究界尚未开发的资源。机器学习测试是一个高度互动和认知的过程,需要一个人在循环的方法。除了为代码库编写测试之外,大部分评估还需要应用领域专家来生成和解释可视化。为了更深入地了解机器学习系统的测试过程,我们建议通过挖掘Jupyter笔记本来研究机器学习管道的可视化。我们建议采用双管齐下的方法进行分析。首先,通过对较小的笔记本样本进行定性研究,收集总体见解和趋势。然后利用从定性研究中获得的知识,设计一个使用更大样本的笔记本的实证研究。计算笔记本以三种格式提供了丰富的信息源——文本、代码和图像。我们希望利用现有的图像分析和文本和代码的自然语言处理工作来分析笔记本中的信息。我们希望在机器学习测试的背景下对程序理解和调试获得一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信