Feature Selection for Vibration Sensor Data Transformed by a Streaming Wavelet Packet Decomposition

Randall Wald, T. Khoshgoftaar, J. Sloan
{"title":"Feature Selection for Vibration Sensor Data Transformed by a Streaming Wavelet Packet Decomposition","authors":"Randall Wald, T. Khoshgoftaar, J. Sloan","doi":"10.1109/ICTAI.2011.168","DOIUrl":null,"url":null,"abstract":"Vibration signals play a valuable role in the remote monitoring of high-assurance machinery such as ocean turbines. Because they are waveforms, vibration data must be transformed prior to being incorporated into a machine condition monitoring/prognostic health monitoring (MCM/PHM) solution to detect which frequencies of oscillation are most prevalent. One downside of these transformations, especially the streaming version of the wavelet packet decomposition (denoted SWPD), is that they can produce a large number of features, hindering the model building and evaluation process. In this paper we demonstrate how feature selection techniques may be applied to the output of the SWPD transformation, vastly reducing the total number of features used to build models. The resulting data can be used to build more accurate models for use in MCM/PHM while minimizing computation time.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Vibration signals play a valuable role in the remote monitoring of high-assurance machinery such as ocean turbines. Because they are waveforms, vibration data must be transformed prior to being incorporated into a machine condition monitoring/prognostic health monitoring (MCM/PHM) solution to detect which frequencies of oscillation are most prevalent. One downside of these transformations, especially the streaming version of the wavelet packet decomposition (denoted SWPD), is that they can produce a large number of features, hindering the model building and evaluation process. In this paper we demonstrate how feature selection techniques may be applied to the output of the SWPD transformation, vastly reducing the total number of features used to build models. The resulting data can be used to build more accurate models for use in MCM/PHM while minimizing computation time.
基于流小波包分解的振动传感器数据特征选择
振动信号在海洋涡轮机等高保证机械的远程监测中发挥着重要作用。由于振动数据是波形,因此在将其纳入机器状态监测/预后健康监测(MCM/PHM)解决方案之前,必须对其进行转换,以检测哪些振动频率最普遍。这些转换的一个缺点,特别是小波包分解的流版本(表示为SWPD),是它们可以产生大量的特征,阻碍了模型构建和评估过程。在本文中,我们演示了如何将特征选择技术应用于SWPD转换的输出,从而大大减少了用于构建模型的特征总数。结果数据可用于构建更精确的MCM/PHM模型,同时最大限度地减少计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信