Mining software code repositories and bug databases using survival analysis models

M. Wedel, U. Jensen, P. Göhner
{"title":"Mining software code repositories and bug databases using survival analysis models","authors":"M. Wedel, U. Jensen, P. Göhner","doi":"10.1145/1414004.1414052","DOIUrl":null,"url":null,"abstract":"Code repositories and bug databases contain valuable information about the process of software development. Typical studies correlate code properties with the number of faults in a software module to find error-prone modules. However, many studies do not regard the occurrence of faults over time, although the time information can be retrieved from bug databases. In order to overcome this problem, we suggest the application of survival analysis models, which are used in biostatistics and can handle time-dependent data. Because a large amount of raw data has to be evaluated statistically, we further discuss the automated retrieval and pre-processing of raw data from code repositories and bug databases.","PeriodicalId":124452,"journal":{"name":"International Symposium on Empirical Software Engineering and Measurement","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Empirical Software Engineering and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1414004.1414052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Code repositories and bug databases contain valuable information about the process of software development. Typical studies correlate code properties with the number of faults in a software module to find error-prone modules. However, many studies do not regard the occurrence of faults over time, although the time information can be retrieved from bug databases. In order to overcome this problem, we suggest the application of survival analysis models, which are used in biostatistics and can handle time-dependent data. Because a large amount of raw data has to be evaluated statistically, we further discuss the automated retrieval and pre-processing of raw data from code repositories and bug databases.
使用生存分析模型挖掘软件代码库和bug数据库
代码存储库和错误数据库包含有关软件开发过程的有价值的信息。典型的研究将代码属性与软件模块中的错误数量联系起来,以发现容易出错的模块。然而,许多研究没有考虑故障随时间的发生,尽管时间信息可以从bug数据库中检索到。为了克服这一问题,我们建议应用生物统计学中使用的生存分析模型,该模型可以处理时间相关的数据。由于需要对大量的原始数据进行统计评估,因此我们进一步讨论了对代码存储库和bug数据库中的原始数据的自动检索和预处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信