Perceptual organization using Bayesian networks

Sudeep Sarkar, K. Boyer
{"title":"Perceptual organization using Bayesian networks","authors":"Sudeep Sarkar, K. Boyer","doi":"10.1109/CVPR.1992.223267","DOIUrl":null,"url":null,"abstract":"It is shown that the formalism of Bayesian networks provides an elegant solution, in a probabilistic framework, to the problem of integrating top-down and bottom-up visual processes as well serving as a knowledge base. The formalism is modified to handle spatial data and thus extends the applicability of Bayesian networks to visual processing. The modified form is called the perceptual inference network (PIN). The theoretical background of a PIN is presented, and its viability is demonstrated in the context of perceptual organization. The PIN imparts an active inferential and integrating nature to perceptual organization.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

It is shown that the formalism of Bayesian networks provides an elegant solution, in a probabilistic framework, to the problem of integrating top-down and bottom-up visual processes as well serving as a knowledge base. The formalism is modified to handle spatial data and thus extends the applicability of Bayesian networks to visual processing. The modified form is called the perceptual inference network (PIN). The theoretical background of a PIN is presented, and its viability is demonstrated in the context of perceptual organization. The PIN imparts an active inferential and integrating nature to perceptual organization.<>
使用贝叶斯网络的感知组织
结果表明,贝叶斯网络的形式化提供了一个优雅的解决方案,在概率框架下,集成自顶向下和自底向上的视觉过程的问题,以及作为一个知识库。该形式被修改以处理空间数据,从而扩展了贝叶斯网络在视觉处理中的适用性。这种改进的形式被称为感知推理网络(PIN)。介绍了PIN的理论背景,并在感知组织的背景下论证了PIN的可行性。PIN赋予知觉组织一种主动的推理和整合的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信