Comparison of similarity measures for clustering electrocardiogram complexes

K. Chang, R. Lee, C. Wen, M. Yeh
{"title":"Comparison of similarity measures for clustering electrocardiogram complexes","authors":"K. Chang, R. Lee, C. Wen, M. Yeh","doi":"10.1109/CIC.2005.1588215","DOIUrl":null,"url":null,"abstract":"This paper compares four similarity measures such as the city block (L1-norm), the Euclidean (L2-norm), the normalized correlation coefficient, and the simplified gray relational grade for clustering QRS complexes. Performances of the measures include classification accuracy, threshold value selection, noise robustness, and execution time. The clustering algorithm used is the so-called two-step unsupervised method. The best out of the 10 independent runs of the clustering algorithm with randomly selected initial template beat for each run is used to compare the performances of each similarity measure. Simulation results show that the simplified gray relational grade outperforms the other measures","PeriodicalId":239491,"journal":{"name":"Computers in Cardiology, 2005","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Cardiology, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2005.1588215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper compares four similarity measures such as the city block (L1-norm), the Euclidean (L2-norm), the normalized correlation coefficient, and the simplified gray relational grade for clustering QRS complexes. Performances of the measures include classification accuracy, threshold value selection, noise robustness, and execution time. The clustering algorithm used is the so-called two-step unsupervised method. The best out of the 10 independent runs of the clustering algorithm with randomly selected initial template beat for each run is used to compare the performances of each similarity measure. Simulation results show that the simplified gray relational grade outperforms the other measures
聚类心电图复合体相似性度量的比较
本文比较了城市街区(l1范数)、欧几里得(l2范数)、归一化相关系数和简化灰色关联度四种聚类QRS复合体的相似性度量。这些度量的性能包括分类精度、阈值选择、噪声鲁棒性和执行时间。所使用的聚类算法是所谓的两步无监督方法。使用随机选择初始模板节拍的聚类算法的10个独立运行中最好的一个来比较每个相似度量的性能。仿真结果表明,简化后的灰度关联度优于其他方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信