Multi-label Classification Based on Adaptive Resonance Theory

Naoki Masuyama, Y. Nojima, C. Loo, H. Ishibuchi
{"title":"Multi-label Classification Based on Adaptive Resonance Theory","authors":"Naoki Masuyama, Y. Nojima, C. Loo, H. Ishibuchi","doi":"10.1109/SSCI47803.2020.9308356","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-label classification algorithm based on an algorithm adaptation approach by applying the Adaptive Resonance Theory (ART) and the Bayesian approach for a label association process. In the proposed algorithm, the prior probability and likelihood are updated sequentially. Moreover, an ART-based clustering algorithm continually extracts useful information for multi-label classification, and holds the extracted information on prototype nodes generated by the clustering algorithm. Thanks to the above properties, the proposed algorithm can continually learn multi-label data. Our experimental results in this paper show that the proposed algorithm has better classification performance compared to typical multi-label classification algorithms.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a multi-label classification algorithm based on an algorithm adaptation approach by applying the Adaptive Resonance Theory (ART) and the Bayesian approach for a label association process. In the proposed algorithm, the prior probability and likelihood are updated sequentially. Moreover, an ART-based clustering algorithm continually extracts useful information for multi-label classification, and holds the extracted information on prototype nodes generated by the clustering algorithm. Thanks to the above properties, the proposed algorithm can continually learn multi-label data. Our experimental results in this paper show that the proposed algorithm has better classification performance compared to typical multi-label classification algorithms.
基于自适应共振理论的多标签分类
本文将自适应共振理论(ART)和贝叶斯方法应用于标签关联过程,提出了一种基于算法自适应的多标签分类算法。在该算法中,先验概率和似然是顺序更新的。此外,基于art的聚类算法不断提取用于多标签分类的有用信息,并将提取的信息保存在聚类算法生成的原型节点上。由于上述特性,该算法可以持续学习多标签数据。实验结果表明,与典型的多标签分类算法相比,本文提出的算法具有更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信