Detection and classification of power quality disturbances using signal processing techniques

H. Singh Rupal, K. Thakur Ankit, S. Mohanty, N. Kishor
{"title":"Detection and classification of power quality disturbances using signal processing techniques","authors":"H. Singh Rupal, K. Thakur Ankit, S. Mohanty, N. Kishor","doi":"10.1109/APPEEC.2017.8308934","DOIUrl":null,"url":null,"abstract":"Wind and solar power experience increased momentum over last decades because of eco-friendly power generation and abundant availability. But at the same time, its high penetration in the conventional grid makes detection of PQ disturbances and islanding situation more complex. Because of limitations of the active-passive based method, a comparative study between Empirical Mode Decomposition (EMD), and Ensemble Empirical Mode Decomposition (EEMD) is used in this paper. A 13 bus micro grid model is simulated in PSCAD (v46) for subsequent analysis. The IMF components of EMD and EEMD of the voltage signal is the elegant choice for disturbance detection. The SVM based nonlinear classifier is used for classification.","PeriodicalId":247669,"journal":{"name":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2017.8308934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Wind and solar power experience increased momentum over last decades because of eco-friendly power generation and abundant availability. But at the same time, its high penetration in the conventional grid makes detection of PQ disturbances and islanding situation more complex. Because of limitations of the active-passive based method, a comparative study between Empirical Mode Decomposition (EMD), and Ensemble Empirical Mode Decomposition (EEMD) is used in this paper. A 13 bus micro grid model is simulated in PSCAD (v46) for subsequent analysis. The IMF components of EMD and EEMD of the voltage signal is the elegant choice for disturbance detection. The SVM based nonlinear classifier is used for classification.
使用信号处理技术检测和分类电能质量干扰
在过去的几十年里,由于环保的发电和充足的可用性,风能和太阳能的发展势头越来越大。但与此同时,它在常规电网中的高穿透性使得PQ干扰和孤岛情况的检测更加复杂。由于基于主-被动方法的局限性,本文对经验模态分解(EMD)和集成经验模态分解(EEMD)进行了比较研究。在PSCAD (v46)中对一个13总线微电网模型进行了仿真,以供后续分析。电压信号的EMD和EEMD的IMF分量是干扰检测的理想选择。采用基于支持向量机的非线性分类器进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信