Fast point quadrupling on elliptic curves

Duc-Phong Le, B. Nguyen
{"title":"Fast point quadrupling on elliptic curves","authors":"Duc-Phong Le, B. Nguyen","doi":"10.1145/2350716.2350750","DOIUrl":null,"url":null,"abstract":"Ciet et al. (2006) proposed an elegant method for trading inversions for multiplications when computing [2]P+Q from two given points P and Q on elliptic curves of Weierstrass form. Motivated by their work, this paper proposes a fast algorithm for computing [4]P with only one inversion in affine coordinates. Our algorithm that requires 1I + 8S + 8M, is faster than two repeated doublings whenever the cost of one field inversion is more expensive than the cost of four field multiplications plus four field squarings (i.e. I > 4M + 4S). It saves one field multiplication and one field squaring in comparison with the Sakai-Sakurai method (2001). Even better, for special curves that allow \"a = 0\" (or \"b = 0\") speedup, we obtain [4]P in affine coordinates using just 1I + 5S + 9M (or 1I + 5S + 6M, respectively).","PeriodicalId":208300,"journal":{"name":"Proceedings of the 3rd Symposium on Information and Communication Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2350716.2350750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Ciet et al. (2006) proposed an elegant method for trading inversions for multiplications when computing [2]P+Q from two given points P and Q on elliptic curves of Weierstrass form. Motivated by their work, this paper proposes a fast algorithm for computing [4]P with only one inversion in affine coordinates. Our algorithm that requires 1I + 8S + 8M, is faster than two repeated doublings whenever the cost of one field inversion is more expensive than the cost of four field multiplications plus four field squarings (i.e. I > 4M + 4S). It saves one field multiplication and one field squaring in comparison with the Sakai-Sakurai method (2001). Even better, for special curves that allow "a = 0" (or "b = 0") speedup, we obtain [4]P in affine coordinates using just 1I + 5S + 9M (or 1I + 5S + 6M, respectively).
快速点四倍在椭圆曲线上
Ciet et al.(2006)在Weierstrass形式的椭圆曲线上从两个给定点P和Q计算[2]P+Q时,提出了一种用乘法交换反转的优雅方法。在他们工作的激励下,本文提出了一种在仿射坐标下仅进行一次反演的快速计算[4]P的算法。我们的算法需要1I + 8S + 8M,当一个场反演的成本比四次场乘法加四次场平方的成本更昂贵(即I > 4M + 4S)时,它比两次重复加倍要快。与Sakai-Sakurai方法(2001)相比,它节省了一个字段乘法和一个字段平方。更好的是,对于允许“a = 0”(或“b = 0”)加速的特殊曲线,我们仅使用1I + 5S + 9M(或分别使用1I + 5S + 6M)在仿射坐标中获得[4]P。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信