{"title":"Measure equivalence classification of transvection-free right-angled Artin groups","authors":"Camille Horbez, Jingyin Huang","doi":"10.5802/jep.199","DOIUrl":null,"url":null,"abstract":"We prove that if two transvection-free right-angled Artin groups are measure equivalent, then they have isomorphic extension graphs. As a consequence, two right-angled Artin groups with finite outer automorphism groups are measure equivalent if and only if they are isomorphic. This matches the quasi-isometry classification. However, in contrast with the quasi-isometry question, we observe that no right-angled Artin group is superrigid in the strongest possible sense, for two reasons. First, a right-angled Artin group $G$ is always measure equivalent to any graph product of infinite countable amenable groups over the same defining graph. Second, when $G$ is nonabelian, the automorphism group of the universal cover of the Salvetti complex of $G$ always contains infinitely generated (non-uniform) lattices.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We prove that if two transvection-free right-angled Artin groups are measure equivalent, then they have isomorphic extension graphs. As a consequence, two right-angled Artin groups with finite outer automorphism groups are measure equivalent if and only if they are isomorphic. This matches the quasi-isometry classification. However, in contrast with the quasi-isometry question, we observe that no right-angled Artin group is superrigid in the strongest possible sense, for two reasons. First, a right-angled Artin group $G$ is always measure equivalent to any graph product of infinite countable amenable groups over the same defining graph. Second, when $G$ is nonabelian, the automorphism group of the universal cover of the Salvetti complex of $G$ always contains infinitely generated (non-uniform) lattices.