Use of Natural Language Processing in Digital Engineering Context to Aid Tagging of Model

Daniel Dunbar, Maximilian Vierlboeck, M. Blackburn
{"title":"Use of Natural Language Processing in Digital Engineering Context to Aid Tagging of Model","authors":"Daniel Dunbar, Maximilian Vierlboeck, M. Blackburn","doi":"10.1109/SysCon53073.2023.10131050","DOIUrl":null,"url":null,"abstract":"This paper uses Natural Language Processing to provide augmented intelligence assistance to the resource intensive task of aligning systems engineering artifacts, namely text requirements and system models, with ontologies. Ontologies are a key enabling technology for digital, multidisciplinary interoperability. The approach presented in this paper combines the efficiency of statistical based natural language processing to process large sets of data with expert verification of output to enable accurate alignment to ontologies in a time efficient manner. It applies this approach to an example from the telecommunications domain to demonstrate the workflows and highlight key points in the process. Enabling easier, faster alignment of systems engineering artifacts with ontologies allows for a holistic view of a system under design and enables interoperability between tools and domains.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"23 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SysCon53073.2023.10131050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper uses Natural Language Processing to provide augmented intelligence assistance to the resource intensive task of aligning systems engineering artifacts, namely text requirements and system models, with ontologies. Ontologies are a key enabling technology for digital, multidisciplinary interoperability. The approach presented in this paper combines the efficiency of statistical based natural language processing to process large sets of data with expert verification of output to enable accurate alignment to ontologies in a time efficient manner. It applies this approach to an example from the telecommunications domain to demonstrate the workflows and highlight key points in the process. Enabling easier, faster alignment of systems engineering artifacts with ontologies allows for a holistic view of a system under design and enables interoperability between tools and domains.
数字工程环境下自然语言处理辅助模型标注的应用
本文使用自然语言处理来为对齐系统工程工件(即文本需求和系统模型)与本体的资源密集型任务提供增强的智能协助。本体是实现数字化、多学科互操作性的关键技术。本文提出的方法结合了基于统计的自然语言处理的效率来处理大型数据集,并对输出进行专家验证,从而能够以高效的方式准确地与本体对齐。本文将此方法应用于一个来自电信领域的示例,以演示工作流并突出显示流程中的关键点。使系统工程工件与本体更容易、更快地对齐,允许对设计中的系统进行整体视图,并支持工具和域之间的互操作性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信