Mario Alfonso Prado-Romero, Bardh Prenkaj, G. Stilo
{"title":"Developing and Evaluating Graph Counterfactual Explanation with GRETEL","authors":"Mario Alfonso Prado-Romero, Bardh Prenkaj, G. Stilo","doi":"10.1145/3539597.3573026","DOIUrl":null,"url":null,"abstract":"The black-box nature and the lack of interpretability detract from constant improvements in Graph Neural Networks (GNNs) performance in social network tasks like friendship prediction and community detection. Graph Counterfactual Explanation (GCE) methods aid in understanding the prediction of GNNs by generating counterfactual examples that promote trustworthiness, debiasing, and privacy in social networks. Alas, the literature on GCE lacks standardised definitions, explainers, datasets, and evaluation metrics. To bridge the gap between the performance and interpretability of GNNs in social networks, we discuss GRETEL, a unified framework for GCE methods development and evaluation. We demonstrate how GRETEL comes with fully extensible built-in components that allow users to define ad-hoc explainer methods, generate synthetic datasets, implement custom evaluation metrics, and integrate state-of-the-art prediction models.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3573026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The black-box nature and the lack of interpretability detract from constant improvements in Graph Neural Networks (GNNs) performance in social network tasks like friendship prediction and community detection. Graph Counterfactual Explanation (GCE) methods aid in understanding the prediction of GNNs by generating counterfactual examples that promote trustworthiness, debiasing, and privacy in social networks. Alas, the literature on GCE lacks standardised definitions, explainers, datasets, and evaluation metrics. To bridge the gap between the performance and interpretability of GNNs in social networks, we discuss GRETEL, a unified framework for GCE methods development and evaluation. We demonstrate how GRETEL comes with fully extensible built-in components that allow users to define ad-hoc explainer methods, generate synthetic datasets, implement custom evaluation metrics, and integrate state-of-the-art prediction models.