The Research of G- expansive Map and Devaney’s G-Chaos Condition on Metric G-Space

Ji Zhan-jiang, Zhai Cong, Xu Cheng-Zhang
{"title":"The Research of G- expansive Map and Devaney’s G-Chaos Condition on Metric G-Space","authors":"Ji Zhan-jiang, Zhai Cong, Xu Cheng-Zhang","doi":"10.1109/ICSGEA.2018.00066","DOIUrl":null,"url":null,"abstract":"The expansive map and chaos have an important significance in terms of theory and application. According to the definition of expansive map and chaos, we give the concept of G-expansive map and Devaney's G-Chaos in this paper. By inference, some conclusions of the metric space were extended to the metric G-space. We have the following result:(1) Let X be a metric G-space, G be a commutative topological group and f be a equivariant self-map on X .Then we have that the map f satisfies the first condition and second condition of Devaney's G-Chaos if and only if the sets U and V have the same periodic orbit where U and V be any nonempty open sets; (2) Let X be a metric G-space and f be a homeomorphism map of X into itself. Then we have that f is a G-expansive map if and only if f^m is a Gexpansive map for any nonzero integer m; (3) Let (X,d_1) and (Y,d_2 ) be a metric G-space. Let f be a homeomorphism and equivariant map from X to Y. If h is a G-expansive map of X into itself, then fhf^-11 is a Gexpansive map of Y into itself; (4) Let X be a metric G-space, A be a invariant subset of G and X X-A be finite. Let f be a homeomorphism map on X. If f is G-expansive on A, then f is G-expansive on X; (5) Let X be a compact metric G-space and G be compact. If f is a G-expansive map with G-expansive constant δ, then for each ε > 0 satifying 0 < ε <δ there exists a positive integer k such that d(G(x),G(y)) ε implies d( f^n(G(x)), f^n(G(y))) > δ for some integer n where |n| <T≤ k. These results enriched the theory of the G-expansive map and Devaney's G-Chaos.","PeriodicalId":445324,"journal":{"name":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGEA.2018.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The expansive map and chaos have an important significance in terms of theory and application. According to the definition of expansive map and chaos, we give the concept of G-expansive map and Devaney's G-Chaos in this paper. By inference, some conclusions of the metric space were extended to the metric G-space. We have the following result:(1) Let X be a metric G-space, G be a commutative topological group and f be a equivariant self-map on X .Then we have that the map f satisfies the first condition and second condition of Devaney's G-Chaos if and only if the sets U and V have the same periodic orbit where U and V be any nonempty open sets; (2) Let X be a metric G-space and f be a homeomorphism map of X into itself. Then we have that f is a G-expansive map if and only if f^m is a Gexpansive map for any nonzero integer m; (3) Let (X,d_1) and (Y,d_2 ) be a metric G-space. Let f be a homeomorphism and equivariant map from X to Y. If h is a G-expansive map of X into itself, then fhf^-11 is a Gexpansive map of Y into itself; (4) Let X be a metric G-space, A be a invariant subset of G and X X-A be finite. Let f be a homeomorphism map on X. If f is G-expansive on A, then f is G-expansive on X; (5) Let X be a compact metric G-space and G be compact. If f is a G-expansive map with G-expansive constant δ, then for each ε > 0 satifying 0 < ε <δ there exists a positive integer k such that d(G(x),G(y)) ε implies d( f^n(G(x)), f^n(G(y))) > δ for some integer n where |n|
度量G空间上G-膨胀映射和Devaney G-混沌条件的研究
膨胀图和混沌具有重要的理论和应用意义。根据扩张映射和混沌的定义,给出了g -扩张映射和Devaney的g -混沌的概念。通过推理,将度量空间的一些结论推广到度量g空间。(1)设X是度量G空间,G是交换拓扑群,f是X上的等变自映射,则映射f满足Devaney G- chaos的第一条件和第二条件,当且仅当集合U和V具有相同的周期轨道,其中U和V为任意非空开集;(2)设X是度量g空间,f是X到自身的同胚映射。那么我们有f是g扩张映射当且仅当f^m是任意非零整数m的g扩张映射;(3)设(X,d_1)和(Y,d_2)是一个度量g空间。设f是X到Y的同胚等变映射,如果h是X到自身的g扩张映射,则fhf^-11是Y到自身的g扩张映射;(4)设X是度量G空间,a是G的不变子集,X X- a是有限的。设f是X上的同胚映射,如果f在a上是g扩张的,那么f在X上是g扩张的;(5)设X是紧度量G空间,G是紧的。如果f是一个具有g膨胀常数δ的g膨胀映射,则对于某整数n| n| < ‰·k,对于每个ε> 0满足0 < εδ,这些结果丰富了g膨胀映射和Devaney的G-Chaos理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信