E. Sandes, Guillermo Miranda, A. Melo, X. Martorell, E. Ayguadé
{"title":"Fine-grain parallel megabase sequence comparison with multiple heterogeneous GPUs","authors":"E. Sandes, Guillermo Miranda, A. Melo, X. Martorell, E. Ayguadé","doi":"10.1145/2555243.2555280","DOIUrl":null,"url":null,"abstract":"This paper proposes and evaluates a parallel strategy to execute the exact Smith-Waterman (SW) algorithm for megabase DNA sequences in heterogeneous multi-GPU platforms. In our strategy, the computation of a single huge SW matrix is spread over multiple GPUs, which communicate border elements to the neighbour, using a circular buffer mechanism that hides the communication overhead. We compared 4 pairs of human-chimpanzee homologous chromosomes using 2 different GPU environments, obtaining a performance of up to 140.36 GCUPS (Billion of cells processed per second) with 3 heterogeneous GPUS.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2555243.2555280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper proposes and evaluates a parallel strategy to execute the exact Smith-Waterman (SW) algorithm for megabase DNA sequences in heterogeneous multi-GPU platforms. In our strategy, the computation of a single huge SW matrix is spread over multiple GPUs, which communicate border elements to the neighbour, using a circular buffer mechanism that hides the communication overhead. We compared 4 pairs of human-chimpanzee homologous chromosomes using 2 different GPU environments, obtaining a performance of up to 140.36 GCUPS (Billion of cells processed per second) with 3 heterogeneous GPUS.