A Metric for Paraphrase Detection

J. Cordeiro, G. Dias, P. Brazdil
{"title":"A Metric for Paraphrase Detection","authors":"J. Cordeiro, G. Dias, P. Brazdil","doi":"10.1109/ICCGI.2007.4","DOIUrl":null,"url":null,"abstract":"Monolingual text-to-text generation is an emerging research area in natural language processing. One reason for the interest in such generation systems is the possibility to automatically learn text-to-text generation strategies from aligned monolingual corpora. In this context, paraphrase detection can be seen as the task of aligning sentences that convey the same information but yet are written in different forms, thereby building a training set of rewriting examples. In this paper, we propose a new metric for unsupervised detection of paraphrases and test it over a set of standard paraphrase corpora. The results are promising as they outperform state-of-the-art measures developed for similar tasks.","PeriodicalId":102568,"journal":{"name":"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCGI.2007.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Monolingual text-to-text generation is an emerging research area in natural language processing. One reason for the interest in such generation systems is the possibility to automatically learn text-to-text generation strategies from aligned monolingual corpora. In this context, paraphrase detection can be seen as the task of aligning sentences that convey the same information but yet are written in different forms, thereby building a training set of rewriting examples. In this paper, we propose a new metric for unsupervised detection of paraphrases and test it over a set of standard paraphrase corpora. The results are promising as they outperform state-of-the-art measures developed for similar tasks.
释义检测的度量
单语文本到文本生成是自然语言处理中的一个新兴研究领域。对这种生成系统感兴趣的一个原因是可以从对齐的单语语料库中自动学习文本到文本的生成策略。在这种情况下,释义检测可以被看作是对齐表达相同信息但以不同形式书写的句子的任务,从而构建重写示例的训练集。在本文中,我们提出了一种新的释义无监督检测度量,并在一组标准释义语料库上进行了测试。结果很有希望,因为它们优于为类似任务开发的最先进的测量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信