A convex cluster merging algorithm using support vector machines

F. Rhee, Byung-In Choi
{"title":"A convex cluster merging algorithm using support vector machines","authors":"F. Rhee, Byung-In Choi","doi":"10.1109/FUZZ.2003.1206549","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fast and reliable distance measure between two convex clusters using support vector machines (SVM). In doing so, the optimal hyperplane obtained by the SVM is used to calculate the minimal distance between the two clusters. As a result, an effective cluster merging algorithm that groups convex clusters resulted from the fuzzy convex clustering (FCC) method in is developed using this optimal distance. Hence, the number of clusters can be further reduced without losing its representation of the data. Several experimental results are given.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1206549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose a fast and reliable distance measure between two convex clusters using support vector machines (SVM). In doing so, the optimal hyperplane obtained by the SVM is used to calculate the minimal distance between the two clusters. As a result, an effective cluster merging algorithm that groups convex clusters resulted from the fuzzy convex clustering (FCC) method in is developed using this optimal distance. Hence, the number of clusters can be further reduced without losing its representation of the data. Several experimental results are given.
基于支持向量机的凸聚类合并算法
本文提出了一种基于支持向量机(SVM)的快速可靠的凸聚类距离度量方法。在此过程中,使用支持向量机获得的最优超平面来计算两个簇之间的最小距离。在此基础上,提出了一种有效的聚类合并算法,将模糊凸聚类(FCC)方法产生的凸聚类进行分组。因此,可以进一步减少簇的数量,而不会丢失其对数据的表示。给出了几个实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信