Handling of Categorical Data in Software Development Effort Estimation: A Systematic Mapping Study

F. Amazal, A. Idri
{"title":"Handling of Categorical Data in Software Development Effort Estimation: A Systematic Mapping Study","authors":"F. Amazal, A. Idri","doi":"10.15439/2019F222","DOIUrl":null,"url":null,"abstract":"Producing reliable and accurate estimates of software effort remains a difficult task in software project management, especially at the early stages of the software life cycle where the information available is more categorical than numerical. In this paper, we conducted a systematic mapping study of papers dealing with categorical data in software development effort estimation. In total, 27 papers were identified from 1997 to January 2019. The selected studies were analyzed and classified according to eight criteria: publication channels, year of publication, research approach, contribution type, SDEE technique, Technique used to handle categorical data, types of categorical data and datasets used. The results showed that most of the selected papers investigate the use of both nominal and ordinal data. Furthermore, Euclidean distance, fuzzy logic, and fuzzy clustering techniques were the most used techniques to handle categorical data using analogy. Using regression, most papers employed ANOVA and combination of categories.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Producing reliable and accurate estimates of software effort remains a difficult task in software project management, especially at the early stages of the software life cycle where the information available is more categorical than numerical. In this paper, we conducted a systematic mapping study of papers dealing with categorical data in software development effort estimation. In total, 27 papers were identified from 1997 to January 2019. The selected studies were analyzed and classified according to eight criteria: publication channels, year of publication, research approach, contribution type, SDEE technique, Technique used to handle categorical data, types of categorical data and datasets used. The results showed that most of the selected papers investigate the use of both nominal and ordinal data. Furthermore, Euclidean distance, fuzzy logic, and fuzzy clustering techniques were the most used techniques to handle categorical data using analogy. Using regression, most papers employed ANOVA and combination of categories.
软件开发工作量评估中分类数据的处理:系统映射研究
在软件项目管理中,产生可靠和准确的软件工作估计仍然是一项困难的任务,特别是在软件生命周期的早期阶段,可用的信息更多是分类而不是数字。在本文中,我们对处理软件开发工作量估算中的分类数据的论文进行了系统的映射研究。从1997年到2019年1月,共鉴定了27篇论文。根据发表渠道、发表年份、研究方法、贡献类型、SDEE技术、分类数据处理技术、分类数据类型和使用的数据集等8个标准对入选研究进行分析和分类。结果表明,大多数选定的论文调查使用名义和序数数据。此外,欧几里得距离、模糊逻辑和模糊聚类技术是利用类比处理分类数据最常用的技术。使用回归,大多数论文采用方差分析和组合类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信