Adaptive Fuzzy Terminal Sliding Mode Synchronization of Uncertain Newton-Leipnik Chaotic System

Xiaomeng Cui, Xiaoshan Zhao, Yongfeng Guo, Xiang Li, Pengyu Hou
{"title":"Adaptive Fuzzy Terminal Sliding Mode Synchronization of Uncertain Newton-Leipnik Chaotic System","authors":"Xiaomeng Cui, Xiaoshan Zhao, Yongfeng Guo, Xiang Li, Pengyu Hou","doi":"10.1109/ICCAR49639.2020.9107996","DOIUrl":null,"url":null,"abstract":"Based on fuzzy adaptive sliding mode control theories, we study the synchronization of fractional uncertain Newton-Leipnik system. In this paper, we design non-singular fractional sliding mode surfaces of error systems by using terminal sliding mode control theories. It is verified that the system is in equilibrium and then synchronized through Lyapunov stability theory. To reduce chattering, a fuzzy controller is designed. Finally, the feasibility and effectiveness of the method are verified by numerical simulation.","PeriodicalId":412255,"journal":{"name":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR49639.2020.9107996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Based on fuzzy adaptive sliding mode control theories, we study the synchronization of fractional uncertain Newton-Leipnik system. In this paper, we design non-singular fractional sliding mode surfaces of error systems by using terminal sliding mode control theories. It is verified that the system is in equilibrium and then synchronized through Lyapunov stability theory. To reduce chattering, a fuzzy controller is designed. Finally, the feasibility and effectiveness of the method are verified by numerical simulation.
不确定Newton-Leipnik混沌系统的自适应模糊终端滑模同步
基于模糊自适应滑模控制理论,研究了分数阶不确定牛顿-莱普尼克系统的同步问题。本文利用终端滑模控制理论,设计了误差系统的非奇异分数阶滑模曲面。通过李雅普诺夫稳定性理论验证了系统处于平衡状态,然后同步。为了减少抖振,设计了模糊控制器。最后,通过数值仿真验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信