Web Site Recommendation Using HTTP Traffic

Ming Jia, Shaozhi Ye, Xing Li, J. Dickerson
{"title":"Web Site Recommendation Using HTTP Traffic","authors":"Ming Jia, Shaozhi Ye, Xing Li, J. Dickerson","doi":"10.1109/ICDM.2007.44","DOIUrl":null,"url":null,"abstract":"Collaborative Filtering (CF) is widely used in web recommender systems, while most existing CF applications focus on transactions or page views within a single site. In this paper, we build a recommender system prototype, which suggests web sites to users, by collecting browsing events at routers without neither user nor website effort. 100 million HTTP flows, involving 11, 327 websites, are converted to user-site ratings using access frequency as the implicit rating metric. With this rating dataset, we evaluate six CF algorithms including one proposed algorithm based on IP address locality. Our experiments show that the recommendation from K nearest neighbors (Runn) performs the best by 50% p@10 (precision of top 10) and 53% p@5 (precision of top 5). Although the precision is far from ideal, our preliminary results suggest the potential value of such a centralized web site recommender system.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Collaborative Filtering (CF) is widely used in web recommender systems, while most existing CF applications focus on transactions or page views within a single site. In this paper, we build a recommender system prototype, which suggests web sites to users, by collecting browsing events at routers without neither user nor website effort. 100 million HTTP flows, involving 11, 327 websites, are converted to user-site ratings using access frequency as the implicit rating metric. With this rating dataset, we evaluate six CF algorithms including one proposed algorithm based on IP address locality. Our experiments show that the recommendation from K nearest neighbors (Runn) performs the best by 50% p@10 (precision of top 10) and 53% p@5 (precision of top 5). Although the precision is far from ideal, our preliminary results suggest the potential value of such a centralized web site recommender system.
使用HTTP流量的网站推荐
协同过滤(CF)广泛应用于web推荐系统,而大多数现有的CF应用程序侧重于单个站点内的交易或页面浏览量。在本文中,我们构建了一个推荐系统原型,通过收集路由器上的浏览事件向用户推荐网站,而不需要用户和网站的努力。1亿个HTTP流,涉及11,327个网站,使用访问频率作为隐式评级指标,转换为用户站点评级。利用这个评级数据集,我们评估了六种CF算法,其中包括一种基于IP地址局部性的算法。我们的实验表明,来自K个最近邻(Runn)的推荐效果最好,分别达到50% p@10(前10名的精度)和53% p@5(前5名的精度)。虽然精度远非理想,但我们的初步结果表明了这种集中式网站推荐系统的潜在价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信