Validation of magnetic resonance imaging (MRI) multispectral tissue classification

M. Vannier, C. M. Speidel, D. Rickman, L. Schertz, Lynette R. Baker, C. Hildebolt, C. J. Offutt, J. A. Balko, R. L. Butterfield, M. Gado
{"title":"Validation of magnetic resonance imaging (MRI) multispectral tissue classification","authors":"M. Vannier, C. M. Speidel, D. Rickman, L. Schertz, Lynette R. Baker, C. Hildebolt, C. J. Offutt, J. A. Balko, R. L. Butterfield, M. Gado","doi":"10.1109/ICPR.1988.28467","DOIUrl":null,"url":null,"abstract":"NASA multispectral image processing technology has been adapted to the analysis of magnetic resonance imaging (MRI) scans. A statistical evaluation of multispectral analysis applied to tissue classification in MRI brain scans has been performed. The radiometric and geometric distortions introduced by the MRI scanner can be removed before feature extraction and classification. Signatures may be derived from one set of multispectral MR images at a single anatomic level and be applied in the same subject at later times, to other anatomic levels containing the same tissues, or to other subjects.<<ETX>>","PeriodicalId":314236,"journal":{"name":"[1988 Proceedings] 9th International Conference on Pattern Recognition","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988 Proceedings] 9th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1988.28467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

NASA multispectral image processing technology has been adapted to the analysis of magnetic resonance imaging (MRI) scans. A statistical evaluation of multispectral analysis applied to tissue classification in MRI brain scans has been performed. The radiometric and geometric distortions introduced by the MRI scanner can be removed before feature extraction and classification. Signatures may be derived from one set of multispectral MR images at a single anatomic level and be applied in the same subject at later times, to other anatomic levels containing the same tissues, or to other subjects.<>
磁共振成像(MRI)多光谱组织分类的验证
NASA的多光谱图像处理技术已适应于磁共振成像(MRI)扫描的分析。多光谱分析应用于MRI脑部扫描组织分类的统计评估已经完成。在特征提取和分类之前,MRI扫描仪引入的辐射和几何畸变可以被去除。签名可以从单一解剖水平的一组多光谱MR图像中获得,并在以后的时间内应用于同一受试者,包含相同组织的其他解剖水平,或其他受试者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信