Information driven association rule hiding algorithms

I. N. Fovino, Alberto Trombetta
{"title":"Information driven association rule hiding algorithms","authors":"I. N. Fovino, Alberto Trombetta","doi":"10.1109/INFTECH.2008.4621664","DOIUrl":null,"url":null,"abstract":"Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when datamining techniques are used. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of sanitizing the database in such a way to prevent the discovery of sensible information (e.g. association rules). A drawback of such algorithms is that the introduced sanitization may disrupt the quality of data itself. In this paper we introduce a new methodology and algorithms for performing useful PPDM operations, while preserving the data quality of the underlying database.","PeriodicalId":247264,"journal":{"name":"2008 1st International Conference on Information Technology","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 1st International Conference on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFTECH.2008.4621664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when datamining techniques are used. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of sanitizing the database in such a way to prevent the discovery of sensible information (e.g. association rules). A drawback of such algorithms is that the introduced sanitization may disrupt the quality of data itself. In this paper we introduce a new methodology and algorithms for performing useful PPDM operations, while preserving the data quality of the underlying database.
信息驱动的关联规则隐藏算法
隐私是信息系统必须满足的最重要的属性之一。一个相对较新的趋势表明,当使用数据挖掘技术时,传统的访问控制技术不足以保证隐私。最近引入了隐私保护数据挖掘(PPDM)算法,其目的是以这种方式对数据库进行消毒,以防止发现敏感信息(例如关联规则)。这种算法的一个缺点是,引入的清理可能会破坏数据本身的质量。在本文中,我们介绍了一种新的方法和算法来执行有用的PPDM操作,同时保持底层数据库的数据质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信