Humanoid learns to detect its own hands

J. Leitner, Simon Harding, Mikhail Frank, A. Förster, J. Schmidhuber
{"title":"Humanoid learns to detect its own hands","authors":"J. Leitner, Simon Harding, Mikhail Frank, A. Förster, J. Schmidhuber","doi":"10.1109/CEC.2013.6557729","DOIUrl":null,"url":null,"abstract":"Robust object manipulation is still a hard problem in robotics, even more so in high degree-of-freedom (DOF) humanoid robots. To improve performance a closer integration of visual and motor systems is needed. We herein present a novel method for a robot to learn robust detection of its own hands and fingers enabling sensorimotor coordination. It does so solely using its own camera images and does not require any external systems or markers. Our system based on Cartesian Genetic Programming (CGP) allows to evolve programs to perform this image segmentation task in real-time on the real hardware. We show results for a Nao and an iCub humanoid each detecting its own hands and fingers.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Robust object manipulation is still a hard problem in robotics, even more so in high degree-of-freedom (DOF) humanoid robots. To improve performance a closer integration of visual and motor systems is needed. We herein present a novel method for a robot to learn robust detection of its own hands and fingers enabling sensorimotor coordination. It does so solely using its own camera images and does not require any external systems or markers. Our system based on Cartesian Genetic Programming (CGP) allows to evolve programs to perform this image segmentation task in real-time on the real hardware. We show results for a Nao and an iCub humanoid each detecting its own hands and fingers.
人形机器人学会了检测自己的手
鲁棒对象操纵一直是机器人技术中的一个难题,在高自由度类人机器人中更是如此。为了提高性能,视觉和运动系统需要更紧密的结合。我们在此提出了一种新的方法,机器人学习鲁棒检测自己的手和手指,使感觉运动协调。它完全使用自己的相机图像,不需要任何外部系统或标记。我们基于笛卡尔遗传规划(CGP)的系统允许进化程序在真实硬件上实时执行此图像分割任务。我们展示了Nao和iCub人形机器人各自检测自己的手和手指的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信