A framework for data representation, processing, and dimensionality reduction with the best-rank tensor decomposition

B. Cyganek
{"title":"A framework for data representation, processing, and dimensionality reduction with the best-rank tensor decomposition","authors":"B. Cyganek","doi":"10.2498/iti.2012.0466","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of efficient multi-dimensional data representation, processing and dimensionality reduction. For this purpose the framework for the best rank-R tensor decomposition is presented. This allows any multi-dimensional data reduction in accordance with chosen ranks. Since computations of tensor decomposition require floating-point operations, we propose special data scaling procedure to allow memory efficient representation in the fixed-point representation. The proposed method is exemplified with processing of the monochrome and color video sequences. The method shows promising results and can be easily applied to other types of multidimensional data.","PeriodicalId":135105,"journal":{"name":"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2498/iti.2012.0466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper addresses the problem of efficient multi-dimensional data representation, processing and dimensionality reduction. For this purpose the framework for the best rank-R tensor decomposition is presented. This allows any multi-dimensional data reduction in accordance with chosen ranks. Since computations of tensor decomposition require floating-point operations, we propose special data scaling procedure to allow memory efficient representation in the fixed-point representation. The proposed method is exemplified with processing of the monochrome and color video sequences. The method shows promising results and can be easily applied to other types of multidimensional data.
一个框架的数据表示,处理,并与最佳等级张量分解降维
本文研究了多维数据的高效表示、处理和降维问题。为此,提出了最佳秩- r张量分解的框架。这允许根据所选的等级进行任何多维数据缩减。由于张量分解的计算需要浮点运算,我们提出了特殊的数据缩放过程,以便在定点表示中实现内存高效表示。以单色和彩色视频序列的处理为例进行了验证。该方法取得了良好的效果,并且可以很容易地应用于其他类型的多维数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信