Real-time RGB-D based people detection and tracking system for mobile robots

Fang Fang, K. Qian, Bo Zhou, Xudong Ma
{"title":"Real-time RGB-D based people detection and tracking system for mobile robots","authors":"Fang Fang, K. Qian, Bo Zhou, Xudong Ma","doi":"10.1109/ICMA.2017.8016114","DOIUrl":null,"url":null,"abstract":"A real-time RGB-D based person detection and tracking system suitable is presented for mobile robots. Our approach combines RGB-D visual odometry estimation, target feature extraction, nearest point position information into a robust vision system that runs on open source robot operating system. As people detection is the most expensive component in any such integration, we invest significant effort into taking maximum advantage of the available depth information. Tracking process by European clustering method removes the noise information. When the depth information is not enough, it is reasonable to use the Cam-Shift method which is based on RGB information. Experimental results validate the feasibility and effectiveness of the proposed method.","PeriodicalId":124642,"journal":{"name":"2017 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2017.8016114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A real-time RGB-D based person detection and tracking system suitable is presented for mobile robots. Our approach combines RGB-D visual odometry estimation, target feature extraction, nearest point position information into a robust vision system that runs on open source robot operating system. As people detection is the most expensive component in any such integration, we invest significant effort into taking maximum advantage of the available depth information. Tracking process by European clustering method removes the noise information. When the depth information is not enough, it is reasonable to use the Cam-Shift method which is based on RGB information. Experimental results validate the feasibility and effectiveness of the proposed method.
基于RGB-D的移动机器人实时人员检测与跟踪系统
提出了一种适用于移动机器人的基于RGB-D的实时人体检测与跟踪系统。我们的方法将RGB-D视觉里程估计、目标特征提取、最近点位置信息结合到一个健壮的视觉系统中,该系统运行在开源机器人操作系统上。由于人员检测是任何此类集成中最昂贵的组件,因此我们投入了大量精力来最大限度地利用可用的深度信息。采用欧式聚类方法进行跟踪,去除噪声信息。当深度信息不足时,采用基于RGB信息的Cam-Shift方法是合理的。实验结果验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信